Module: Numo::GSL::Cdf

Defined in:
ext/numo/gsl/cdf/gsl_cdf.c

Class Method Summary collapse

Class Method Details

.beta_P(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the beta distribution with parameters a and b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2479

static VALUE
cdf_s_beta_P(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_beta_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.beta_Pinv(P, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the beta distribution with parameters a and b.

Parameters:

  • P (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2583

static VALUE
cdf_s_beta_Pinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_beta_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.beta_Q(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the beta distribution with parameters a and b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2531

static VALUE
cdf_s_beta_Q(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_beta_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.beta_Qinv(Q, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the beta distribution with parameters a and b.

Parameters:

  • Q (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2635

static VALUE
cdf_s_beta_Qinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_beta_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.binomial_P(k, p, n) ⇒ DFloat

These functions compute the cumulative distribution functions P(k), Q(k) for the binomial distribution with parameters p and n.

Parameters:

  • k (UInt)
  • p (Integer)

    parameter

  • n (Float)

    parameter

Returns:

  • (DFloat)

    result



3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3805

static VALUE
cdf_s_binomial_P(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cUI,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_binomial_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    char *opt;
    opt = ALLOCA_N(char,sizeof(double)+sizeof(unsigned int));

    *(double*)opt = NUM2DBL(v1);
    *(unsigned int*)(opt+sizeof(double)) = NUM2UINT(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.binomial_Q(k, p, n) ⇒ DFloat

These functions compute the cumulative distribution functions P(k), Q(k) for the binomial distribution with parameters p and n.

Parameters:

  • k (UInt)
  • p (Integer)

    parameter

  • n (Float)

    parameter

Returns:

  • (DFloat)

    result



3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3860

static VALUE
cdf_s_binomial_Q(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cUI,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_binomial_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    char *opt;
    opt = ALLOCA_N(char,sizeof(double)+sizeof(unsigned int));

    *(double*)opt = NUM2DBL(v1);
    *(unsigned int*)(opt+sizeof(double)) = NUM2UINT(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.cauchy_P(x, a) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Cauchy distribution with scale parameter a.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

Returns:

  • (DFloat)

    result



891
892
893
894
895
896
897
898
899
900
901
902
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 891

static VALUE
cdf_s_cauchy_P(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_cauchy_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.cauchy_Pinv(P, a) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Cauchy distribution with scale parameter a.

Parameters:

  • P (DFloat)
  • a (Float)

    parameter

Returns:

  • (DFloat)

    result



985
986
987
988
989
990
991
992
993
994
995
996
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 985

static VALUE
cdf_s_cauchy_Pinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_cauchy_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.cauchy_Q(x, a) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Cauchy distribution with scale parameter a.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

Returns:

  • (DFloat)

    result



938
939
940
941
942
943
944
945
946
947
948
949
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 938

static VALUE
cdf_s_cauchy_Q(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_cauchy_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.cauchy_Qinv(Q, a) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Cauchy distribution with scale parameter a.

Parameters:

  • Q (DFloat)
  • a (Float)

    parameter

Returns:

  • (DFloat)

    result



1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1032

static VALUE
cdf_s_cauchy_Qinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_cauchy_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.chisq_P(x, nu) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the chi-squared distribution with nu degrees of freedom.

Parameters:

  • x (DFloat)
  • nu (Float)

    parameter

Returns:

  • (DFloat)

    result



1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1891

static VALUE
cdf_s_chisq_P(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_chisq_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.chisq_Pinv(P, nu) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the chi-squared distribution with nu degrees of freedom.

Parameters:

  • P (DFloat)
  • nu (Float)

    parameter

Returns:

  • (DFloat)

    result



1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1985

static VALUE
cdf_s_chisq_Pinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_chisq_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.chisq_Q(x, nu) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the chi-squared distribution with nu degrees of freedom.

Parameters:

  • x (DFloat)
  • nu (Float)

    parameter

Returns:

  • (DFloat)

    result



1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1938

static VALUE
cdf_s_chisq_Q(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_chisq_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.chisq_Qinv(Q, nu) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the chi-squared distribution with nu degrees of freedom.

Parameters:

  • Q (DFloat)
  • nu (Float)

    parameter

Returns:

  • (DFloat)

    result



2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2032

static VALUE
cdf_s_chisq_Qinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_chisq_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.exponential_P(x, mu) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the exponential distribution with mean mu.

Parameters:

  • x (DFloat)
  • mu (Float)

    parameter

Returns:

  • (DFloat)

    result



411
412
413
414
415
416
417
418
419
420
421
422
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 411

static VALUE
cdf_s_exponential_P(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_exponential_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.exponential_Pinv(P, mu) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the exponential distribution with mean mu.

Parameters:

  • P (DFloat)
  • mu (Float)

    parameter

Returns:

  • (DFloat)

    result



505
506
507
508
509
510
511
512
513
514
515
516
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 505

static VALUE
cdf_s_exponential_Pinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_exponential_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.exponential_Q(x, mu) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the exponential distribution with mean mu.

Parameters:

  • x (DFloat)
  • mu (Float)

    parameter

Returns:

  • (DFloat)

    result



458
459
460
461
462
463
464
465
466
467
468
469
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 458

static VALUE
cdf_s_exponential_Q(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_exponential_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.exponential_Qinv(Q, mu) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the exponential distribution with mean mu.

Parameters:

  • Q (DFloat)
  • mu (Float)

    parameter

Returns:

  • (DFloat)

    result



552
553
554
555
556
557
558
559
560
561
562
563
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 552

static VALUE
cdf_s_exponential_Qinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_exponential_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.exppow_P(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) for the exponential power distribution with parameters a and b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



791
792
793
794
795
796
797
798
799
800
801
802
803
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 791

static VALUE
cdf_s_exppow_P(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_exppow_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.exppow_Q(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) for the exponential power distribution with parameters a and b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



843
844
845
846
847
848
849
850
851
852
853
854
855
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 843

static VALUE
cdf_s_exppow_Q(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_exppow_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.fdist_P(x, nu1, nu2) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the F-distribution with nu1 and nu2 degrees of freedom.

Parameters:

  • x (DFloat)
  • nu1 (Float)

    parameter

  • nu2 (Float)

    parameter

Returns:

  • (DFloat)

    result



2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2083

static VALUE
cdf_s_fdist_P(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_fdist_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.fdist_Pinv(P, nu1, nu2) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the F-distribution with nu1 and nu2 degrees of freedom.

Parameters:

  • P (DFloat)
  • nu1 (Float)

    parameter

  • nu2 (Float)

    parameter

Returns:

  • (DFloat)

    result



2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2187

static VALUE
cdf_s_fdist_Pinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_fdist_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.fdist_Q(x, nu1, nu2) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the F-distribution with nu1 and nu2 degrees of freedom.

Parameters:

  • x (DFloat)
  • nu1 (Float)

    parameter

  • nu2 (Float)

    parameter

Returns:

  • (DFloat)

    result



2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2135

static VALUE
cdf_s_fdist_Q(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_fdist_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.fdist_Qinv(Q, nu1, nu2) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the F-distribution with nu1 and nu2 degrees of freedom.

Parameters:

  • Q (DFloat)
  • nu1 (Float)

    parameter

  • nu2 (Float)

    parameter

Returns:

  • (DFloat)

    result



2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2239

static VALUE
cdf_s_fdist_Qinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_fdist_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.flat_P(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for a uniform distribution from a to b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1479

static VALUE
cdf_s_flat_P(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_flat_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.flat_Pinv(P, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for a uniform distribution from a to b.

Parameters:

  • P (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1583

static VALUE
cdf_s_flat_Pinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_flat_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.flat_Q(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for a uniform distribution from a to b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1531

static VALUE
cdf_s_flat_Q(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_flat_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.flat_Qinv(Q, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for a uniform distribution from a to b.

Parameters:

  • Q (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1635

static VALUE
cdf_s_flat_Qinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_flat_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.gamma_P(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the gamma distribution with parameters a and b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1271

static VALUE
cdf_s_gamma_P(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gamma_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.gamma_Pinv(P, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the gamma distribution with parameters a and b.

Parameters:

  • P (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1375

static VALUE
cdf_s_gamma_Pinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gamma_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.gamma_Q(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the gamma distribution with parameters a and b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1323

static VALUE
cdf_s_gamma_Q(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gamma_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.gamma_Qinv(Q, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the gamma distribution with parameters a and b.

Parameters:

  • Q (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1427

static VALUE
cdf_s_gamma_Qinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gamma_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.gaussian_P(x, sigma) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Gaussian distribution with standard deviation sigma.

Parameters:

  • x (DFloat)
  • sigma (Float)

    parameter

Returns:

  • (DFloat)

    result



63
64
65
66
67
68
69
70
71
72
73
74
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 63

static VALUE
cdf_s_gaussian_P(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gaussian_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.gaussian_Pinv(P, sigma) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Gaussian distribution with standard deviation sigma.

Parameters:

  • P (DFloat)
  • sigma (Float)

    parameter

Returns:

  • (DFloat)

    result



157
158
159
160
161
162
163
164
165
166
167
168
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 157

static VALUE
cdf_s_gaussian_Pinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gaussian_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.gaussian_Q(x, sigma) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Gaussian distribution with standard deviation sigma.

Parameters:

  • x (DFloat)
  • sigma (Float)

    parameter

Returns:

  • (DFloat)

    result



110
111
112
113
114
115
116
117
118
119
120
121
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 110

static VALUE
cdf_s_gaussian_Q(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gaussian_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.gaussian_Qinv(Q, sigma) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Gaussian distribution with standard deviation sigma.

Parameters:

  • Q (DFloat)
  • sigma (Float)

    parameter

Returns:

  • (DFloat)

    result



204
205
206
207
208
209
210
211
212
213
214
215
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 204

static VALUE
cdf_s_gaussian_Qinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gaussian_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.geometric_P(k, p) ⇒ DFloat

These functions compute the cumulative distribution functions P(k), Q(k) for the geometric distribution with parameter p.

Parameters:

  • k (UInt)
  • p (Float)

    parameter

Returns:

  • (DFloat)

    result



4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 4126

static VALUE
cdf_s_geometric_P(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cUI,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_geometric_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.geometric_Q(k, p) ⇒ DFloat

These functions compute the cumulative distribution functions P(k), Q(k) for the geometric distribution with parameter p.

Parameters:

  • k (UInt)
  • p (Float)

    parameter

Returns:

  • (DFloat)

    result



4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 4174

static VALUE
cdf_s_geometric_Q(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cUI,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_geometric_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.gumbel1_P(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Type-1 Gumbel distribution with parameters a and b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3291

static VALUE
cdf_s_gumbel1_P(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gumbel1_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.gumbel1_Pinv(P, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Type-1 Gumbel distribution with parameters a and b.

Parameters:

  • P (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3395

static VALUE
cdf_s_gumbel1_Pinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gumbel1_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.gumbel1_Q(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Type-1 Gumbel distribution with parameters a and b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3343

static VALUE
cdf_s_gumbel1_Q(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gumbel1_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.gumbel1_Qinv(Q, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Type-1 Gumbel distribution with parameters a and b.

Parameters:

  • Q (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3447

static VALUE
cdf_s_gumbel1_Qinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gumbel1_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.gumbel2_P(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Type-2 Gumbel distribution with parameters a and b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3499

static VALUE
cdf_s_gumbel2_P(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gumbel2_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.gumbel2_Pinv(P, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Type-2 Gumbel distribution with parameters a and b.

Parameters:

  • P (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3603

static VALUE
cdf_s_gumbel2_Pinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gumbel2_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.gumbel2_Q(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Type-2 Gumbel distribution with parameters a and b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3551

static VALUE
cdf_s_gumbel2_Q(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gumbel2_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.gumbel2_Qinv(Q, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Type-2 Gumbel distribution with parameters a and b.

Parameters:

  • Q (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3655

static VALUE
cdf_s_gumbel2_Qinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_gumbel2_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.hypergeometric_P(k, n1, n2, t) ⇒ DFloat

These functions compute the cumulative distribution functions P(k), Q(k) for the hypergeometric distribution with parameters n1, n2 and t.

Parameters:

  • k (UInt)
  • n1 (Integer)

    parameter

  • n2 (Integer)

    parameter

  • t (Integer)

    parameter

Returns:

  • (DFloat)

    result



4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 4228

static VALUE
cdf_s_hypergeometric_P(VALUE mod, VALUE v0, VALUE v1, VALUE v2, VALUE v3)
{
    ndfunc_arg_in_t ain[1] = {{cUI,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_hypergeometric_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    unsigned int opt[3];

    opt[0] = NUM2UINT(v1);
    opt[1] = NUM2UINT(v2);
    opt[2] = NUM2UINT(v3);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.hypergeometric_Q(k, n1, n2, t) ⇒ DFloat

These functions compute the cumulative distribution functions P(k), Q(k) for the hypergeometric distribution with parameters n1, n2 and t.

Parameters:

  • k (UInt)
  • n1 (Integer)

    parameter

  • n2 (Integer)

    parameter

  • t (Integer)

    parameter

Returns:

  • (DFloat)

    result



4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 4284

static VALUE
cdf_s_hypergeometric_Q(VALUE mod, VALUE v0, VALUE v1, VALUE v2, VALUE v3)
{
    ndfunc_arg_in_t ain[1] = {{cUI,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_hypergeometric_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    unsigned int opt[3];

    opt[0] = NUM2UINT(v1);
    opt[1] = NUM2UINT(v2);
    opt[2] = NUM2UINT(v3);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.laplace_P(x, a) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Laplace distribution with width a.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

Returns:

  • (DFloat)

    result



599
600
601
602
603
604
605
606
607
608
609
610
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 599

static VALUE
cdf_s_laplace_P(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_laplace_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.laplace_Pinv(P, a) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Laplace distribution with width a.

Parameters:

  • P (DFloat)
  • a (Float)

    parameter

Returns:

  • (DFloat)

    result



693
694
695
696
697
698
699
700
701
702
703
704
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 693

static VALUE
cdf_s_laplace_Pinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_laplace_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.laplace_Q(x, a) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Laplace distribution with width a.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

Returns:

  • (DFloat)

    result



646
647
648
649
650
651
652
653
654
655
656
657
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 646

static VALUE
cdf_s_laplace_Q(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_laplace_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.laplace_Qinv(Q, a) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Laplace distribution with width a.

Parameters:

  • Q (DFloat)
  • a (Float)

    parameter

Returns:

  • (DFloat)

    result



740
741
742
743
744
745
746
747
748
749
750
751
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 740

static VALUE
cdf_s_laplace_Qinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_laplace_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.logistic_P(x, a) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the logistic distribution with scale parameter a.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

Returns:

  • (DFloat)

    result



2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2683

static VALUE
cdf_s_logistic_P(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_logistic_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.logistic_Pinv(P, a) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the logistic distribution with scale parameter a.

Parameters:

  • P (DFloat)
  • a (Float)

    parameter

Returns:

  • (DFloat)

    result



2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2777

static VALUE
cdf_s_logistic_Pinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_logistic_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.logistic_Q(x, a) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the logistic distribution with scale parameter a.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

Returns:

  • (DFloat)

    result



2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2730

static VALUE
cdf_s_logistic_Q(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_logistic_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.logistic_Qinv(Q, a) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the logistic distribution with scale parameter a.

Parameters:

  • Q (DFloat)
  • a (Float)

    parameter

Returns:

  • (DFloat)

    result



2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2824

static VALUE
cdf_s_logistic_Qinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_logistic_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.lognormal_P(x, zeta, sigma) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the lognormal distribution with parameters zeta and sigma.

Parameters:

  • x (DFloat)
  • zeta (Float)

    parameter

  • sigma (Float)

    parameter

Returns:

  • (DFloat)

    result



1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1687

static VALUE
cdf_s_lognormal_P(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_lognormal_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.lognormal_Pinv(P, zeta, sigma) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the lognormal distribution with parameters zeta and sigma.

Parameters:

  • P (DFloat)
  • zeta (Float)

    parameter

  • sigma (Float)

    parameter

Returns:

  • (DFloat)

    result



1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1791

static VALUE
cdf_s_lognormal_Pinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_lognormal_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.lognormal_Q(x, zeta, sigma) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the lognormal distribution with parameters zeta and sigma.

Parameters:

  • x (DFloat)
  • zeta (Float)

    parameter

  • sigma (Float)

    parameter

Returns:

  • (DFloat)

    result



1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1739

static VALUE
cdf_s_lognormal_Q(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_lognormal_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.lognormal_Qinv(Q, zeta, sigma) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the lognormal distribution with parameters zeta and sigma.

Parameters:

  • Q (DFloat)
  • zeta (Float)

    parameter

  • sigma (Float)

    parameter

Returns:

  • (DFloat)

    result



1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1843

static VALUE
cdf_s_lognormal_Qinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_lognormal_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.negative_binomial_P(k, p, n) ⇒ DFloat

These functions compute the cumulative distribution functions P(k), Q(k) for the negative binomial distribution with parameters p and n.

Parameters:

  • k (UInt)
  • p (Float)

    parameter

  • n (Float)

    parameter

Returns:

  • (DFloat)

    result



3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3914

static VALUE
cdf_s_negative_binomial_P(VALUE mod , VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cUI,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_negative_binomial_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.negative_binomial_Q(k, p, n) ⇒ DFloat

These functions compute the cumulative distribution functions P(k), Q(k) for the negative binomial distribution with parameters p and n.

Parameters:

  • k (UInt)
  • p (Float)

    parameter

  • n (Float)

    parameter

Returns:

  • (DFloat)

    result



3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3967

static VALUE
cdf_s_negative_binomial_Q(VALUE mod , VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cUI,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_negative_binomial_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.pareto_P(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Pareto distribution with exponent a and scale b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2875

static VALUE
cdf_s_pareto_P(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_pareto_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.pareto_Pinv(P, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Pareto distribution with exponent a and scale b.

Parameters:

  • P (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2979

static VALUE
cdf_s_pareto_Pinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_pareto_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.pareto_Q(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Pareto distribution with exponent a and scale b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2927

static VALUE
cdf_s_pareto_Q(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_pareto_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.pareto_Qinv(Q, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Pareto distribution with exponent a and scale b.

Parameters:

  • Q (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3031

static VALUE
cdf_s_pareto_Qinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_pareto_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.pascal_P(k, p, n) ⇒ DFloat

These functions compute the cumulative distribution functions P(k), Q(k) for the Pascal distribution with parameters p and n.

Parameters:

  • k (UInt)
  • p (Integer)

    parameter

  • n (Float)

    parameter

Returns:

  • (DFloat)

    result



4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 4021

static VALUE
cdf_s_pascal_P(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cUI,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_pascal_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    char *opt;
    opt = ALLOCA_N(char,sizeof(double)+sizeof(unsigned int));

    *(double*)opt = NUM2DBL(v1);
    *(unsigned int*)(opt+sizeof(double)) = NUM2UINT(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.pascal_Q(k, p, n) ⇒ DFloat

These functions compute the cumulative distribution functions P(k), Q(k) for the Pascal distribution with parameters p and n.

Parameters:

  • k (UInt)
  • p (Integer)

    parameter

  • n (Float)

    parameter

Returns:

  • (DFloat)

    result



4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 4076

static VALUE
cdf_s_pascal_Q(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cUI,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_pascal_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    char *opt;
    opt = ALLOCA_N(char,sizeof(double)+sizeof(unsigned int));

    *(double*)opt = NUM2DBL(v1);
    *(unsigned int*)(opt+sizeof(double)) = NUM2UINT(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.poisson_P(k, mu) ⇒ DFloat

These functions compute the cumulative distribution functions P(k), Q(k) for the Poisson distribution with parameter mu.

Parameters:

  • k (UInt)
  • mu (Float)

    parameter

Returns:

  • (DFloat)

    result



3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3704

static VALUE
cdf_s_poisson_P(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cUI,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_poisson_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.poisson_Q(k, mu) ⇒ DFloat

These functions compute the cumulative distribution functions P(k), Q(k) for the Poisson distribution with parameter mu.

Parameters:

  • k (UInt)
  • mu (Float)

    parameter

Returns:

  • (DFloat)

    result



3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3752

static VALUE
cdf_s_poisson_Q(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cUI,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_poisson_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.rayleigh_P(x, sigma) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Rayleigh distribution with scale parameter sigma.

Parameters:

  • x (DFloat)
  • sigma (Float)

    parameter

Returns:

  • (DFloat)

    result



1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1079

static VALUE
cdf_s_rayleigh_P(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_rayleigh_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.rayleigh_Pinv(P, sigma) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Rayleigh distribution with scale parameter sigma.

Parameters:

  • P (DFloat)
  • sigma (Float)

    parameter

Returns:

  • (DFloat)

    result



1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1173

static VALUE
cdf_s_rayleigh_Pinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_rayleigh_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.rayleigh_Q(x, sigma) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Rayleigh distribution with scale parameter sigma.

Parameters:

  • x (DFloat)
  • sigma (Float)

    parameter

Returns:

  • (DFloat)

    result



1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1126

static VALUE
cdf_s_rayleigh_Q(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_rayleigh_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.rayleigh_Qinv(Q, sigma) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Rayleigh distribution with scale parameter sigma.

Parameters:

  • Q (DFloat)
  • sigma (Float)

    parameter

Returns:

  • (DFloat)

    result



1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 1220

static VALUE
cdf_s_rayleigh_Qinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_rayleigh_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.tdist_P(x, nu) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the t-distribution with nu degrees of freedom.

Parameters:

  • x (DFloat)
  • nu (Float)

    parameter

Returns:

  • (DFloat)

    result



2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2287

static VALUE
cdf_s_tdist_P(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_tdist_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.tdist_Pinv(P, nu) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the t-distribution with nu degrees of freedom.

Parameters:

  • P (DFloat)
  • nu (Float)

    parameter

Returns:

  • (DFloat)

    result



2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2381

static VALUE
cdf_s_tdist_Pinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_tdist_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.tdist_Q(x, nu) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the t-distribution with nu degrees of freedom.

Parameters:

  • x (DFloat)
  • nu (Float)

    parameter

Returns:

  • (DFloat)

    result



2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2334

static VALUE
cdf_s_tdist_Q(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_tdist_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.tdist_Qinv(Q, nu) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the t-distribution with nu degrees of freedom.

Parameters:

  • Q (DFloat)
  • nu (Float)

    parameter

Returns:

  • (DFloat)

    result



2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 2428

static VALUE
cdf_s_tdist_Qinv(VALUE mod, VALUE v0, VALUE v1)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_tdist_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double c1;

    c1 = NUM2DBL(v1);

    return na_ndloop3(&ndf, &c1, 1, v0);
}

.ugaussian_P(x) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the unit Gaussian distribution.

Parameters:

  • x (DFloat)

Returns:

  • (DFloat)

    result



247
248
249
250
251
252
253
254
255
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 247

static VALUE
cdf_s_ugaussian_P(VALUE mod, VALUE v0)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_ugaussian_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};

    return na_ndloop(&ndf, 1, v0);
}

.ugaussian_Pinv(P) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the unit Gaussian distribution.

Parameters:

  • P (DFloat)

Returns:

  • (DFloat)

    result



327
328
329
330
331
332
333
334
335
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 327

static VALUE
cdf_s_ugaussian_Pinv(VALUE mod, VALUE v0)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_ugaussian_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};

    return na_ndloop(&ndf, 1, v0);
}

.ugaussian_Q(x) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the unit Gaussian distribution.

Parameters:

  • x (DFloat)

Returns:

  • (DFloat)

    result



287
288
289
290
291
292
293
294
295
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 287

static VALUE
cdf_s_ugaussian_Q(VALUE mod, VALUE v0)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_ugaussian_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};

    return na_ndloop(&ndf, 1, v0);
}

.ugaussian_Qinv(Q) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the unit Gaussian distribution.

Parameters:

  • Q (DFloat)

Returns:

  • (DFloat)

    result



367
368
369
370
371
372
373
374
375
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 367

static VALUE
cdf_s_ugaussian_Qinv(VALUE mod, VALUE v0)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_ugaussian_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};

    return na_ndloop(&ndf, 1, v0);
}

.weibull_P(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Weibull distribution with scale a and exponent b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3083

static VALUE
cdf_s_weibull_P(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_weibull_P, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.weibull_Pinv(P, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Weibull distribution with scale a and exponent b.

Parameters:

  • P (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3187

static VALUE
cdf_s_weibull_Pinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_weibull_Pinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.weibull_Q(x, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Weibull distribution with scale a and exponent b.

Parameters:

  • x (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3135

static VALUE
cdf_s_weibull_Q(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_weibull_Q, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}

.weibull_Qinv(Q, a, b) ⇒ DFloat

These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Weibull distribution with scale a and exponent b.

Parameters:

  • Q (DFloat)
  • a (Float)

    parameter

  • b (Float)

    parameter

Returns:

  • (DFloat)

    result



3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
# File 'ext/numo/gsl/cdf/gsl_cdf.c', line 3239

static VALUE
cdf_s_weibull_Qinv(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
{
    ndfunc_arg_in_t ain[1] = {{cDF,0}};
    ndfunc_arg_out_t aout[1] = {{cDF,0}};
    ndfunc_t ndf = {iter_cdf_s_weibull_Qinv, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
    double opt[2];

    opt[0] = NUM2DBL(v1);
    opt[1] = NUM2DBL(v2);

    return na_ndloop3(&ndf, opt, 1, v0);
}