Class: Numo::GSL::Histogram
- Inherits:
-
Object
- Object
- Numo::GSL::Histogram
- Defined in:
- ext/numo/gsl/histogram/gsl_histogram.c
Class Method Summary collapse
-
.new(n) ⇒ Object
allocate instance of Histogram class.
Instance Method Summary collapse
-
#accumulate(x, weight) ⇒ Histogram
This function is similar to gsl_histogram_increment but increases the value of the appropriate bin in the histogram h by the floating-point number weight.
-
#add(h2) ⇒ Bool
This function adds the contents of the bins in histogram h2 to the corresponding bins of histogram h1, i.e.
-
#bin ⇒ DFloat
returns bin field in gsl_histogram struct.
-
#bins ⇒ Integer
These functions return the maximum upper and minimum lower range limits and the number of bins of the histogram h.
-
#div(h2) ⇒ Bool
This function divides the contents of the bins of histogram h1 by the contents of the corresponding bins in histogram h2, i.e.
-
#equal_bins_p(h2) ⇒ Bool
This function returns 1 if the all of the individual bin ranges of the two histograms are identical, and 0 otherwise.
-
#get(i) ⇒ Histogram
This function returns the contents of the i-th bin of the histogram h.
-
#get_range(i) ⇒ Array
This function finds the upper and lower range limits of the i-th bin of the histogram h.
-
#increment(x) ⇒ Histogram
This function updates the histogram h by adding one (1.0) to the bin whose range contains the coordinate x.
-
#max ⇒ Float
These functions return the maximum upper and minimum lower range limits and the number of bins of the histogram h.
-
#max_bin ⇒ Integer
This function returns the index of the bin containing the maximum value.
-
#max_val ⇒ Float
This function returns the maximum value contained in the histogram bins.
-
#mean ⇒ Float
This function returns the mean of the histogrammed variable, where the histogram is regarded as a probability distribution.
-
#memcpy(src) ⇒ Bool
This function copies the histogram src into the pre-existing histogram dest, making dest into an exact copy of src.
-
#min ⇒ Float
These functions return the maximum upper and minimum lower range limits and the number of bins of the histogram h.
-
#min_bin ⇒ Integer
This function returns the index of the bin containing the minimum value.
-
#min_val ⇒ Float
This function returns the minimum value contained in the histogram bins.
-
#mul(h2) ⇒ Bool
This function multiplies the contents of the bins of histogram h1 by the contents of the corresponding bins in histogram h2, i.e.
-
#n ⇒ Integer
returns n field in gsl_histogram struct.
-
#range ⇒ DFloat
returns range field in gsl_histogram struct.
-
#reset ⇒ Object
This function resets all the bins in the histogram h to zero.
-
#scale(scale) ⇒ Qnil
This function multiplies the contents of the bins of histogram h by the constant scale, i.e.
-
#set_ranges(range[]) ⇒ Histogram
This function sets the ranges of the existing histogram h using the array range of size size.
-
#set_ranges_uniform(xmin, xmax) ⇒ Qnil
This function sets the ranges of the existing histogram h to cover the range xmin to xmax uniformly.
-
#shift(offset) ⇒ Qnil
This function shifts the contents of the bins of histogram h by the constant offset, i.e.
-
#sigma ⇒ Float
This function returns the standard deviation of the histogrammed variable, where the histogram is regarded as a probability distribution.
-
#sub(h2) ⇒ Bool
This function subtracts the contents of the bins in histogram h2 from the corresponding bins of histogram h1, i.e.
-
#sum ⇒ Float
This function returns the sum of all bin values.
Class Method Details
.new(n) ⇒ Object
allocate instance of Histogram class.
This function allocates memory for a histogram with n bins, and returns a pointer to a newly created gsl_histogram struct. If insufficient memory is available a null pointer is returned and the error handler is invoked with an error code of GSL_ENOMEM. The bins and ranges are not initialized, and should be prepared using one of the range-setting functions below in order to make the histogram ready for use.
164 165 166 167 168 169 170 171 172 173 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 164
static VALUE
histogram_s_new(VALUE self, VALUE v1)
{
gsl_histogram *w;
w = gsl_histogram_alloc(NUM2SIZET(v1));
if (!w) {
rb_raise(rb_eNoMemError,"fail to allocate struct");
}
return TypedData_Wrap_Struct(cHistogram, &histogram_data_type, (void*)w);
}
|
Instance Method Details
#accumulate(x, weight) ⇒ Histogram
This function is similar to gsl_histogram_increment but increases the value of the appropriate bin in the histogram h by the floating-point number weight.
363 364 365 366 367 368 369 370 371 372 373 374 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 363
static VALUE
histogram_accumulate(VALUE self, VALUE v1, VALUE v2)
{
gsl_histogram *w;
ndfunc_arg_in_t ain[2] = {{cDF,0},{cDF,0}};
ndfunc_t ndf = {iter_histogram_accumulate, STRIDE_LOOP, 2,0, ain,0};
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
na_ndloop3(&ndf, w, 2, v1, v2);
return self;
}
|
#add(h2) ⇒ Bool
This function adds the contents of the bins in histogram h2 to the corresponding bins of histogram h1, i.e. h’_1(i) = h_1(i) + h_2(i). The two histograms must have identical bin ranges.
743 744 745 746 747 748 749 750 751 752 753 754 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 743
static VALUE
histogram_add(VALUE self, VALUE v1)
{
int stat;
gsl_histogram *w, *w1;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
TypedData_Get_Struct(v1, gsl_histogram, &histogram_data_type, w1);
stat = gsl_histogram_add(w, w1);
return (stat) ? Qtrue: Qfalse;
}
|
#bin ⇒ DFloat
returns bin field in gsl_histogram struct.
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 125
static VALUE
histogram_bin(VALUE self)
{
gsl_histogram *w;
double *d;
VALUE v;
size_t n, i, shape[1];
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
shape[0] = n = w->n;
v = rb_narray_new(cDF, 1, shape);
d = (double*)na_get_pointer_for_write(v);
for (i=0; i<n; i++) {
d[i] = w->bin[i];
}
return v;
}
|
#bins ⇒ Integer
These functions return the maximum upper and minimum lower range limits and the number of bins of the histogram h. They provide a way of determining these values without accessing the gsl_histogram struct directly.
544 545 546 547 548 549 550 551 552 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 544
static VALUE
histogram_bins(VALUE self)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
return SIZET2NUM(gsl_histogram_bins(w));
}
|
#div(h2) ⇒ Bool
This function divides the contents of the bins of histogram h1 by the contents of the corresponding bins in histogram h2, i.e. h’_1(i) = h_1(i) / h_2(i). The two histograms must have identical bin ranges.
817 818 819 820 821 822 823 824 825 826 827 828 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 817
static VALUE
histogram_div(VALUE self, VALUE v1)
{
int stat;
gsl_histogram *w, *w1;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
TypedData_Get_Struct(v1, gsl_histogram, &histogram_data_type, w1);
stat = gsl_histogram_div(w, w1);
return (stat) ? Qtrue: Qfalse;
}
|
#equal_bins_p(h2) ⇒ Bool
This function returns 1 if the all of the individual bin ranges of the two histograms are identical, and 0 otherwise.
719 720 721 722 723 724 725 726 727 728 729 730 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 719
static VALUE
histogram_equal_bins_p(VALUE self, VALUE v1)
{
int stat;
gsl_histogram *w, *w1;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
TypedData_Get_Struct(v1, gsl_histogram, &histogram_data_type, w1);
stat = gsl_histogram_equal_bins_p(w, w1);
return (stat) ? Qtrue: Qfalse;
}
|
#get(i) ⇒ Histogram
This function returns the contents of the i-th bin of the histogram h. If i lies outside the valid range of indices for the histogram then the error handler is called with an error code of GSL_EDOM and the function returns 0.
416 417 418 419 420 421 422 423 424 425 426 427 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 416
static VALUE
histogram_get(VALUE self, VALUE v1)
{
gsl_histogram *w;
ndfunc_arg_in_t ain[1] = {{cSSZ,0}};
ndfunc_arg_out_t aout[1] = {{cDF,0}};
ndfunc_t ndf = {iter_histogram_get, STRIDE_LOOP|NDF_EXTRACT, 1,1, ain,aout};
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
return na_ndloop3(&ndf, w, 1, v1);
}
|
#get_range(i) ⇒ Array
This function finds the upper and lower range limits of the i-th bin of the histogram h. If the index i is valid then the corresponding range limits are stored in lower and upper. The lower limit is inclusive (i.e. events with this coordinate are included in the bin) and the upper limit is exclusive (i.e. events with the coordinate of the upper limit are excluded and fall in the neighboring higher bin, if it exists). The function returns 0 to indicate success. If i lies outside the valid range of indices for the histogram then the error handler is called and the function returns an error code of GSL_EDOM.
478 479 480 481 482 483 484 485 486 487 488 489 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 478
static VALUE
histogram_get_range(VALUE self, VALUE v1)
{
gsl_histogram *w;
ndfunc_arg_in_t ain[1] = {{cSSZ,0}};
ndfunc_arg_out_t aout[2] = {{cDF,0},{cDF,0}};
ndfunc_t ndf = {iter_histogram_get_range, STRIDE_LOOP|NDF_EXTRACT, 1,2, ain,aout};
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
return na_ndloop3(&ndf, w, 1, v1);
}
|
#increment(x) ⇒ Histogram
This function updates the histogram h by adding one (1.0) to the bin whose range contains the coordinate x.
If x lies in the valid range of the histogram then the function returns zero to indicate success. If x is less than the lower limit of the histogram then the function returns GSL_EDOM, and none of bins are modified. Similarly, if the value of x is greater than or equal to the upper limit of the histogram then the function returns GSL_EDOM, and none of the bins are modified. The error handler is not called, however, since it is often necessary to compute histograms for a small range of a larger dataset, ignoring the values outside the range of interest.
317 318 319 320 321 322 323 324 325 326 327 328 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 317
static VALUE
histogram_increment(VALUE self, VALUE v1)
{
gsl_histogram *w;
ndfunc_arg_in_t ain[1] = {{cDF,0}};
ndfunc_t ndf = {iter_histogram_increment, FULL_LOOP, 1,0, ain,0};
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
na_ndloop3(&ndf, w, 1, v1);
return self;
}
|
#max ⇒ Float
These functions return the maximum upper and minimum lower range limits and the number of bins of the histogram h. They provide a way of determining these values without accessing the gsl_histogram struct directly.
502 503 504 505 506 507 508 509 510 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 502
static VALUE
histogram_max(VALUE self)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
return DBL2NUM(gsl_histogram_max(w));
}
|
#max_bin ⇒ Integer
This function returns the index of the bin containing the maximum value. In the case where several bins contain the same maximum value the smallest index is returned.
599 600 601 602 603 604 605 606 607 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 599
static VALUE
histogram_max_bin(VALUE self)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
return SIZET2NUM(gsl_histogram_max_bin(w));
}
|
#max_val ⇒ Float
This function returns the maximum value contained in the histogram bins.
579 580 581 582 583 584 585 586 587 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 579
static VALUE
histogram_max_val(VALUE self)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
return DBL2NUM(gsl_histogram_max_val(w));
}
|
#mean ⇒ Float
This function returns the mean of the histogrammed variable, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. The accuracy of the result is limited by the bin width.
658 659 660 661 662 663 664 665 666 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 658
static VALUE
histogram_mean(VALUE self)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
return DBL2NUM(gsl_histogram_mean(w));
}
|
#memcpy(src) ⇒ Bool
This function copies the histogram src into the pre-existing histogram dest, making dest into an exact copy of src. The two histograms must be of the same size.
257 258 259 260 261 262 263 264 265 266 267 268 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 257
static VALUE
histogram_memcpy(VALUE self, VALUE v1)
{
int stat;
gsl_histogram *w, *w1;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
TypedData_Get_Struct(v1, gsl_histogram, &histogram_data_type, w1);
stat = gsl_histogram_memcpy(w, w1);
return (stat) ? Qtrue: Qfalse;
}
|
#min ⇒ Float
These functions return the maximum upper and minimum lower range limits and the number of bins of the histogram h. They provide a way of determining these values without accessing the gsl_histogram struct directly.
523 524 525 526 527 528 529 530 531 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 523
static VALUE
histogram_min(VALUE self)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
return DBL2NUM(gsl_histogram_min(w));
}
|
#min_bin ⇒ Integer
This function returns the index of the bin containing the minimum value. In the case where several bins contain the same maximum value the smallest index is returned.
637 638 639 640 641 642 643 644 645 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 637
static VALUE
histogram_min_bin(VALUE self)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
return SIZET2NUM(gsl_histogram_min_bin(w));
}
|
#min_val ⇒ Float
This function returns the minimum value contained in the histogram bins.
617 618 619 620 621 622 623 624 625 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 617
static VALUE
histogram_min_val(VALUE self)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
return DBL2NUM(gsl_histogram_min_val(w));
}
|
#mul(h2) ⇒ Bool
This function multiplies the contents of the bins of histogram h1 by the contents of the corresponding bins in histogram h2, i.e. h’_1(i) = h_1(i) * h_2(i). The two histograms must have identical bin ranges.
792 793 794 795 796 797 798 799 800 801 802 803 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 792
static VALUE
histogram_mul(VALUE self, VALUE v1)
{
int stat;
gsl_histogram *w, *w1;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
TypedData_Get_Struct(v1, gsl_histogram, &histogram_data_type, w1);
stat = gsl_histogram_mul(w, w1);
return (stat) ? Qtrue: Qfalse;
}
|
#n ⇒ Integer
returns n field in gsl_histogram struct.
75 76 77 78 79 80 81 82 83 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 75
static VALUE
histogram_n(VALUE self)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
return SIZET2NUM(w->n);
}
|
#range ⇒ DFloat
returns range field in gsl_histogram struct.
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 94
static VALUE
histogram_range(VALUE self)
{
gsl_histogram *w;
double *d;
VALUE v;
size_t n, i, shape[1];
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
shape[0] = n = w->n+1;
v = rb_narray_new(cDF, 1, shape);
d = (double*)na_get_pointer_for_write(v);
for (i=0; i<n; i++) {
d[i] = w->range[i];
}
return v;
}
|
#reset ⇒ Object
This function resets all the bins in the histogram h to zero.
561 562 563 564 565 566 567 568 569 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 561
static VALUE
histogram_reset(VALUE self)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
gsl_histogram_reset(w);
return Qnil;
}
|
#scale(scale) ⇒ Qnil
This function multiplies the contents of the bins of histogram h by the constant scale, i.e. $h’_1(i) = h_1(i) * \hboxscale$ h’_1(i) = h_1(i) * scale.
841 842 843 844 845 846 847 848 849 850 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 841
static VALUE
histogram_scale(VALUE self, VALUE v1)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
gsl_histogram_scale(w, NUM2DBL(v1));
return Qnil;
}
|
#set_ranges(range[]) ⇒ Histogram
This function sets the ranges of the existing histogram h using the array range of size size. The values of the histogram bins are reset to zero. The range array should contain the desired bin limits. The ranges can be arbitrary, subject to the restriction that they are monotonically increasing.
The following example shows how to create a histogram with logarithmic bins with ranges [1,10), [10,100) and [100,1000).
gsl_histogram * h = gsl_histogram_alloc (3);
// bin[0] covers the range 1 <= x < 10 // bin[1] covers the range 10 <= x < 100 // bin[2] covers the range 100 <= x < 1000
double range[4] = [ 1.0, 10.0, 100.0, 1000.0 ];
gsl_histogram_set_ranges (h, range, 4);
Note that the size of the range array should be defined to be one element bigger than the number of bins. The additional element is required for the upper value of the final bin.
205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 205
static VALUE
histogram_set_ranges(VALUE self, VALUE v1)
{
gsl_histogram *w;
double *p1;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
v1 = cast_1d_contiguous(v1, cDF);
p1 = (double*)na_get_pointer_for_read(v1);
gsl_histogram_set_ranges(w, p1, RNARRAY_SIZE(v1));
RB_GC_GUARD(v1);
return self;
}
|
#set_ranges_uniform(xmin, xmax) ⇒ Qnil
This function sets the ranges of the existing histogram h to cover the range xmin to xmax uniformly. The values of the histogram bins are reset to zero. The bin ranges are shown in the table below,
where d is the bin spacing, d = (xmax-xmin)/n.
235 236 237 238 239 240 241 242 243 244 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 235
static VALUE
histogram_set_ranges_uniform(VALUE self, VALUE v1, VALUE v2)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
gsl_histogram_set_ranges_uniform(w, NUM2DBL(v1), NUM2DBL(v2));
return Qnil;
}
|
#shift(offset) ⇒ Qnil
This function shifts the contents of the bins of histogram h by the constant offset, i.e. $h’_1(i) = h_1(i) + \hboxoffset$ h’_1(i) = h_1(i) + offset.
863 864 865 866 867 868 869 870 871 872 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 863
static VALUE
histogram_shift(VALUE self, VALUE v1)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
gsl_histogram_shift(w, NUM2DBL(v1));
return Qnil;
}
|
#sigma ⇒ Float
This function returns the standard deviation of the histogrammed variable, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. The accuracy of the result is limited by the bin width.
679 680 681 682 683 684 685 686 687 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 679
static VALUE
histogram_sigma(VALUE self)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
return DBL2NUM(gsl_histogram_sigma(w));
}
|
#sub(h2) ⇒ Bool
This function subtracts the contents of the bins in histogram h2 from the corresponding bins of histogram h1, i.e. h’_1(i) = h_1(i) - h_2(i). The two histograms must have identical bin ranges.
767 768 769 770 771 772 773 774 775 776 777 778 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 767
static VALUE
histogram_sub(VALUE self, VALUE v1)
{
int stat;
gsl_histogram *w, *w1;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
TypedData_Get_Struct(v1, gsl_histogram, &histogram_data_type, w1);
stat = gsl_histogram_sub(w, w1);
return (stat) ? Qtrue: Qfalse;
}
|
#sum ⇒ Float
This function returns the sum of all bin values. Negative bin values are included in the sum.
698 699 700 701 702 703 704 705 706 |
# File 'ext/numo/gsl/histogram/gsl_histogram.c', line 698
static VALUE
histogram_sum(VALUE self)
{
gsl_histogram *w;
TypedData_Get_Struct(self, gsl_histogram, &histogram_data_type, w);
return DBL2NUM(gsl_histogram_sum(w));
}
|