Module: Numo::GSL::Ran

Included in:
Rng
Defined in:
ext/numo/gsl/rng/gsl_rng.c,
ext/numo/gsl/ran/gsl_ran.c

Defined Under Namespace

Classes: Discrete

Instance Method Summary collapse

Instance Method Details

#bernoulli(p, [shape]) ⇒ Integer or UInt

This function returns either 0 or 1, the result of a Bernoulli trial with probability p. The probability distribution for a Bernoulli trial is,

p(0) = 1 - p p(1) = p

Parameters:

  • p (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Integer or UInt)

    returns random number



4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
# File 'ext/numo/gsl/rng/gsl_rng.c', line 4352

static VALUE
ran_bernoulli(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    unsigned int *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_bernoulli(r , a0));
    } else {
        vna = create_new_narray(cUInt,vshape);
        ptr = (unsigned int*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_bernoulli(r , a0);
        }
        return vna;
    }
}

#beta(a, b, [shape]) ⇒ Float or DFloat

This function returns a random variate from the beta distribution. The distribution function is,

p(x) dx = [\Gamma(a+b) \over \Gamma(a) \Gamma(b)] x^[a-1] (1-x)^[b-1] dx

for $0 \le x \le 1$ 0 <= x <= 1.

Parameters:

  • a (Float)
  • b (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3776

static VALUE
ran_beta(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    double a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_beta(r , a0, a1));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_beta(r , a0, a1);
        }
        return vna;
    }
}

#binomial(p, n, [shape]) ⇒ Integer or UInt

This function returns a random integer from the binomial distribution, the number of successes in n independent trials with probability p. The probability distribution for binomial variates is,

p(k) = [n! \over k! (n-k)! ] p^k (1-p)^[n-k]

for $0 \le k \le n$ 0 <= k <= n.

Parameters:

  • p (Float)
  • n (Integer)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Integer or UInt)

    returns random number



4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
# File 'ext/numo/gsl/rng/gsl_rng.c', line 4402

static VALUE
ran_binomial(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    unsigned int *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    unsigned int a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2UINT(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_binomial(r , a0, a1));
    } else {
        vna = create_new_narray(cUInt,vshape);
        ptr = (unsigned int*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_binomial(r , a0, a1);
        }
        return vna;
    }
}

#bivariate_gaussian(sigma_x, sigma_y, rho, [shape]) ⇒ Object

This function generates a pair of correlated Gaussian variates, with mean zero, correlation coefficient rho and standard deviations sigma_x and sigma_y in the x and y directions. The probability distribution for bivariate Gaussian random variates is,

p(x,y) dx dy = [1 \over 2 \pi \sigma_x \sigma_y \sqrt[1-\rho^2]] \exp (-(x^2/\sigma_x^2 + y^2/\sigma_y^2 - 2 \rho x y/(\sigma_x\sigma_y))/2(1-\rho^2)) dx dy

for x,y in the range -\infty to +\infty. The correlation coefficient rho should lie between 1 and -1.

Parameters:

  • sigma_x (Float)
  • sigma_y (Float)
  • rho (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • [] returns random number



2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
# File 'ext/numo/gsl/rng/gsl_rng.c', line 2952

static VALUE
ran_bivariate_gaussian(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vx, vy;
    size_t i, size;
    int nargs;
    double x, y;
    double *px, *py;
    
    VALUE v0;
    VALUE v1;
    VALUE v2;
    
    double a0;
    double a1;
    double a2;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "31" , &v0, &v1, &v2, &vshape);
    
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    a2 = NUM2DBL(v2);
    if (nargs == 3) {
        gsl_ran_bivariate_gaussian(r , a0, a1, a2, &x, &y);
        return rb_assoc_new(DBL2NUM(x),DBL2NUM(y));
    } else {
        vx = create_new_narray(cDF,vshape);
        vy = create_new_narray(cDF,vshape);
        px = (double*)na_get_pointer_for_write(vx);
        py = (double*)na_get_pointer_for_write(vy);
        size = RNARRAY_SIZE(vx);
        for (i=0; i<size; i++) {
            gsl_ran_bivariate_gaussian(r , a0, a1, a2, px, py);
            px++; py++;
        }
        return rb_assoc_new(vx,vy);
    }
}

#cauchy(a, [shape]) ⇒ Float or DFloat

This function returns a random variate from the Cauchy distribution with scale parameter a. The probability distribution for Cauchy random variates is,

p(x) dx = [1 \over a\pi (1 + (x/a)^2) ] dx

for x in the range -\infty to +\infty. The Cauchy distribution is also known as the Lorentz distribution.

Parameters:

  • a (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3162

static VALUE
ran_cauchy(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_cauchy(r , a0));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_cauchy(r , a0);
        }
        return vna;
    }
}

#chisq(nu, [shape]) ⇒ Float or DFloat

This function returns a random variate from the chi-squared distribution with nu degrees of freedom. The distribution function is,

p(x) dx = [1 \over 2 \Gamma(\nu/2) ] (x/2)^[\nu/2 - 1] \exp(-x/2) dx

for $x \ge 0$ x >= 0.

Parameters:

  • nu (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3624

static VALUE
ran_chisq(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_chisq(r , a0));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_chisq(r , a0);
        }
        return vna;
    }
}

#dir_2d([shape]) ⇒ Object

This function returns a random direction vector v = (x,y) in two dimensions. The vector is normalized such that |v|^2 = x^2 + y^2 = 1. The obvious way to do this is to take a uniform random number between 0 and 2\pi and let x and y be the sine and cosine respectively. Two trig functions would have been expensive in the old days, but with modern hardware implementations, this is sometimes the fastest way to go. This is the case for the Pentium (but not the case for the Sun Sparcstation). One can avoid the trig evaluations by choosing x and y in the interior of a unit circle (choose them at random from the interior of the enclosing square, and then reject those that are outside the unit circle), and then dividing by $\sqrt+ y^2$ \sqrt[x^2 + y^2]. A much cleverer approach, attributed to von Neumann (See Knuth, v2, 3rd ed, p140, exercise 23), requires neither trig nor a square root. In this approach, u and v are chosen at random from the interior of a unit circle, and then x=(u^2-v^2)/(u^2+v^2) and y=2uv/(u^2+v^2).

Parameters:

  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • [] returns random number



3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3936

static VALUE
ran_dir_2d(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vx, vy;
    size_t i, size;
    int nargs;
    double x, y;
    double *px, *py;
    
    
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "01" , &vshape);
    
    if (nargs == 0) {
        gsl_ran_dir_2d(r , &x, &y);
        return rb_assoc_new(DBL2NUM(x),DBL2NUM(y));
    } else {
        vx = create_new_narray(cDF,vshape);
        vy = create_new_narray(cDF,vshape);
        px = (double*)na_get_pointer_for_write(vx);
        py = (double*)na_get_pointer_for_write(vy);
        size = RNARRAY_SIZE(vx);
        for (i=0; i<size; i++) {
            gsl_ran_dir_2d(r , px, py);
            px++; py++;
        }
        return rb_assoc_new(vx,vy);
    }
}

#dir_2d_trig_method([shape]) ⇒ Object

This function returns a random direction vector v = (x,y) in two dimensions. The vector is normalized such that |v|^2 = x^2 + y^2 = 1. The obvious way to do this is to take a uniform random number between 0 and 2\pi and let x and y be the sine and cosine respectively. Two trig functions would have been expensive in the old days, but with modern hardware implementations, this is sometimes the fastest way to go. This is the case for the Pentium (but not the case for the Sun Sparcstation). One can avoid the trig evaluations by choosing x and y in the interior of a unit circle (choose them at random from the interior of the enclosing square, and then reject those that are outside the unit circle), and then dividing by $\sqrt+ y^2$ \sqrt[x^2 + y^2]. A much cleverer approach, attributed to von Neumann (See Knuth, v2, 3rd ed, p140, exercise 23), requires neither trig nor a square root. In this approach, u and v are chosen at random from the interior of a unit circle, and then x=(u^2-v^2)/(u^2+v^2) and y=2uv/(u^2+v^2).

Parameters:

  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • [] returns random number



3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3996

static VALUE
ran_dir_2d_trig_method(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vx, vy;
    size_t i, size;
    int nargs;
    double x, y;
    double *px, *py;
    
    
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "01" , &vshape);
    
    if (nargs == 0) {
        gsl_ran_dir_2d_trig_method(r , &x, &y);
        return rb_assoc_new(DBL2NUM(x),DBL2NUM(y));
    } else {
        vx = create_new_narray(cDF,vshape);
        vy = create_new_narray(cDF,vshape);
        px = (double*)na_get_pointer_for_write(vx);
        py = (double*)na_get_pointer_for_write(vy);
        size = RNARRAY_SIZE(vx);
        for (i=0; i<size; i++) {
            gsl_ran_dir_2d_trig_method(r , px, py);
            px++; py++;
        }
        return rb_assoc_new(vx,vy);
    }
}

#dir_3d([shape]) ⇒ Array

This function returns a random direction vector v = (x,y,z) in three dimensions. The vector is normalized such that |v|^2 = x^2 + y^2 + z^2 = 1. The method employed is due to Robert E. Knop (CACM 13, 326 (1970)), and explained in Knuth, v2, 3rd ed, p136. It uses the surprising fact that the distribution projected along any axis is actually uniform (this is only true for 3 dimensions).

Parameters:

  • shape (Array or Integer)

    (optional) shape for result Numo::NArray

Returns:

  • (Array)

    returns array of [x,y,z], where x,y,z are Float or Numo::DFloat



4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
# File 'ext/numo/gsl/rng/gsl_rng.c', line 4045

static VALUE
ran_dir_3d(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape;
    VALUE v[3];
    size_t i, size;
    int nargs;
    double x, y, z;
    double *px, *py, *pz;
    
    
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "01" , &vshape);
    
    if (nargs == 0) {
        gsl_ran_dir_3d(r , &x, &y, &z);
        v[0] = DBL2NUM(x);
        v[1] = DBL2NUM(y);
        v[2] = DBL2NUM(z);
        return rb_ary_new4(3,v);
    } else {
        v[0] = create_new_narray(cDF,vshape);
        v[1] = create_new_narray(cDF,vshape);
        v[2] = create_new_narray(cDF,vshape);
        px = (double*)na_get_pointer_for_write(v[0]);
        py = (double*)na_get_pointer_for_write(v[1]);
        pz = (double*)na_get_pointer_for_write(v[2]);
        size = RNARRAY_SIZE(v[0]);
        for (i=0; i<size; i++) {
            gsl_ran_dir_3d(r , px, py, pz);
            px++; py++; pz++;
        }
        return rb_ary_new4(3,v);
    }
}

#dirichlet(alpha[]) ⇒ DFloat

This function returns an array of K random variates from a Dirichlet distribution of order K-1. The distribution function is

p(\theta_1, …, \theta_K) d\theta_1 … d\theta_K = (1/Z) \prod_[i=1]^K \theta_i^[\alpha_i - 1] \delta(1 -\sum_[i=1]^K \theta_i) d\theta_1 … d\theta_K

for $\theta_i \ge 0$ theta_i >= 0 and $\alpha_i > 0$ alpha_i > 0. The delta function ensures that \sum \theta_i = 1. The normalization factor Z is

Z = [\prod_[i=1]^K \Gamma(\alpha_i)] / [\Gamma( \sum_[i=1]^K \alpha_i)]

The random variates are generated by sampling K values from gamma distributions with parameters $a=\alpha_i$, $b=1$ a=alpha_i, b=1, and renormalizing. See A.M. Law, W.D. Kelton, Simulation Modeling and Analysis (1991).

Parameters:

  • alpha[] (DFloat)

Returns:

  • (DFloat)

    theta[]



4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
# File 'ext/numo/gsl/rng/gsl_rng.c', line 4266

static VALUE
ran_dirichlet(VALUE self, VALUE valpha)
{
    VALUE   vtheta;
    double *alpha, *theta;
    narray_t *na;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    valpha = cast_1d_contiguous(valpha, cDF);
    GetNArray(valpha,na);
    vtheta = rb_narray_new(cDF,na->ndim,na->shape);
    theta = (double*)na_get_pointer_for_write(vtheta);
    alpha = (double*)na_get_pointer_for_read(valpha);

    gsl_ran_dirichlet(r, na->size, alpha, theta);
    RB_GC_GUARD(valpha);
    return vtheta;
}

#exponential(mu, [shape]) ⇒ Float or DFloat

This function returns a random variate from the exponential distribution with mean mu. The distribution is,

p(x) dx = [1 \over \mu] \exp(-x/\mu) dx

for $x \ge 0$ x >= 0.

Parameters:

  • mu (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3011

static VALUE
ran_exponential(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_exponential(r , a0));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_exponential(r , a0);
        }
        return vna;
    }
}

#exppow(a, b, [shape]) ⇒ Float or DFloat

This function returns a random variate from the exponential power distribution with scale parameter a and exponent b. The distribution is,

p(x) dx = [1 \over 2 a \Gamma(1+1/b)] \exp(- x/a ^b) dx

for $x \ge 0$ x >= 0. For b = 1 this reduces to the Laplace distribution. For b = 2 it has the same form as a Gaussian distribution, but with $a = \sqrt2 \sigma$ a = \sqrt[2] \sigma.

Parameters:

  • a (Float)
  • b (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3110

static VALUE
ran_exppow(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    double a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_exppow(r , a0, a1));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_exppow(r , a0, a1);
        }
        return vna;
    }
}

#fdist(nu1, nu2, [shape]) ⇒ Float or DFloat

This function returns a random variate from the F-distribution with degrees of freedom nu1 and nu2. The distribution function is,

p(x) dx = [ \Gamma((\nu_1 + \nu_2)/2) \over \Gamma(\nu_1/2) \Gamma(\nu_2/2) ] \nu_1^[\nu_1/2] \nu_2^[\nu_2/2] x^[\nu_1/2 - 1] (\nu_2 + \nu_1 x)^[-\nu_1/2 -\nu_2/2]

for $x \ge 0$ x >= 0.

Parameters:

  • nu1 (Float)
  • nu2 (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3676

static VALUE
ran_fdist(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    double a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_fdist(r , a0, a1));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_fdist(r , a0, a1);
        }
        return vna;
    }
}

#flat(a, b, [shape]) ⇒ Float or DFloat

This function returns a random variate from the flat (uniform) distribution from a to b. The distribution is,

p(x) dx = [1 \over (b-a)] dx

if $a \le x < b$ a <= x < b and 0 otherwise.

Parameters:

  • a (Float)
  • b (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3522

static VALUE
ran_flat(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    double a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_flat(r , a0, a1));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_flat(r , a0, a1);
        }
        return vna;
    }
}

#gamma(a, b, [shape]) ⇒ Float or DFloat

This function returns a random variate from the gamma distribution. The distribution function is,

p(x) dx = [1 \over \Gamma(a) b^a] x^[a-1] e^[-x/b] dx

for x > 0. If X and Y are independent gamma-distributed random variables of order a and b, then X+Y has a gamma distribution of order a+b.

The gamma distribution with an integer parameter a is known as the Erlang distribution.

The variates are computed using the Marsaglia-Tsang fast gamma method. This function for this method was previously called gsl_ran_gamma_mt and can still be accessed using this name.

Parameters:

  • a (Float)
  • b (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3424

static VALUE
ran_gamma(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    double a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_gamma(r , a0, a1));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_gamma(r , a0, a1);
        }
        return vna;
    }
}

#gamma_knuth(a, b, [shape]) ⇒ Float or DFloat

This function returns a gamma variate using the algorithms from Knuth (vol 2).

Parameters:

  • a (Float)
  • b (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3470

static VALUE
ran_gamma_knuth(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    double a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_gamma_knuth(r , a0, a1));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_gamma_knuth(r , a0, a1);
        }
        return vna;
    }
}

#gaussian(sigma, [shape]) ⇒ Float or DFloat

This function returns a Gaussian random variate, with mean zero and standard deviation sigma. The probability distribution for Gaussian random variates is,

p(x) dx = [1 \over \sqrt[2 \pi \sigma^2]] \exp (-x^2 / 2\sigma^2) dx

for x in the range -\infty to +\infty. Use the transformation z = \mu + x on the numbers returned by gsl_ran_gaussian to obtain a Gaussian distribution with mean \mu. This function uses the Box-Muller algorithm which requires two calls to the random number generator r.

Parameters:

  • sigma (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
# File 'ext/numo/gsl/rng/gsl_rng.c', line 2627

static VALUE
ran_gaussian(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_gaussian(r , a0));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_gaussian(r , a0);
        }
        return vna;
    }
}

#gaussian_ratio_method(sigma, [shape]) ⇒ Float or DFloat

This function computes a Gaussian random variate using the alternative Marsaglia-Tsang ziggurat and Kinderman-Monahan-Leva ratio methods. The Ziggurat algorithm is the fastest available algorithm in most cases.

Parameters:

  • sigma (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
# File 'ext/numo/gsl/rng/gsl_rng.c', line 2715

static VALUE
ran_gaussian_ratio_method(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_gaussian_ratio_method(r , a0));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_gaussian_ratio_method(r , a0);
        }
        return vna;
    }
}

#gaussian_tail(a, sigma, [shape]) ⇒ Float or DFloat

This function provides random variates from the upper tail of a Gaussian distribution with standard deviation sigma. The values returned are larger than the lower limit a, which must be positive. The method is based on Marsaglia’s famous rectangle-wedge-tail algorithm (Ann. Math. Stat. 32, 894–899 (1961)), with this aspect explained in Knuth, v2, 3rd ed, p139,586 (exercise 11).

The probability distribution for Gaussian tail random variates is,

p(x) dx = [1 \over N(a;\sigma) \sqrt[2 \pi \sigma^2]] \exp (- x^2/(2 \sigma^2)) dx

for x > a where N(a;\sigma) is the normalization constant,

N(a;\sigma) = (1/2) erfc(a / sqrt(2 sigma^2)).

Parameters:

  • a (Float)
  • sigma (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
# File 'ext/numo/gsl/rng/gsl_rng.c', line 2852

static VALUE
ran_gaussian_tail(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    double a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_gaussian_tail(r , a0, a1));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_gaussian_tail(r , a0, a1);
        }
        return vna;
    }
}

#gaussian_ziggurat(sigma, [shape]) ⇒ Float or DFloat

This function computes a Gaussian random variate using the alternative Marsaglia-Tsang ziggurat and Kinderman-Monahan-Leva ratio methods. The Ziggurat algorithm is the fastest available algorithm in most cases.

Parameters:

  • sigma (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
# File 'ext/numo/gsl/rng/gsl_rng.c', line 2671

static VALUE
ran_gaussian_ziggurat(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_gaussian_ziggurat(r , a0));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_gaussian_ziggurat(r , a0);
        }
        return vna;
    }
}

#geometric(p, [shape]) ⇒ Integer or UInt

This function returns a random integer from the geometric distribution, the number of independent trials with probability p until the first success. The probability distribution for geometric variates is,

p(k) = p (1-p)^(k-1)

for $k \ge 1$ k >= 1. Note that the distribution begins with k=1 with this definition. There is another convention in which the exponent k-1 is replaced by k.

Parameters:

  • p (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Integer or UInt)

    returns random number



4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
# File 'ext/numo/gsl/rng/gsl_rng.c', line 4567

static VALUE
ran_geometric(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    unsigned int *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_geometric(r , a0));
    } else {
        vna = create_new_narray(cUInt,vshape);
        ptr = (unsigned int*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_geometric(r , a0);
        }
        return vna;
    }
}

#gumbel1(a, b, [shape]) ⇒ Float or DFloat

This function returns a random variate from the Type-1 Gumbel distribution. The Type-1 Gumbel distribution function is,

p(x) dx = a b \exp(-(b \exp(-ax) + ax)) dx

for -\infty < x < \infty.

Parameters:

  • a (Float)
  • b (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
# File 'ext/numo/gsl/rng/gsl_rng.c', line 4153

static VALUE
ran_gumbel1(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    double a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_gumbel1(r , a0, a1));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_gumbel1(r , a0, a1);
        }
        return vna;
    }
}

#gumbel2(a, b, [shape]) ⇒ Float or DFloat

This function returns a random variate from the Type-2 Gumbel distribution. The Type-2 Gumbel distribution function is,

p(x) dx = a b x^[-a-1] \exp(-b x^[-a]) dx

for 0 < x < \infty.

Parameters:

  • a (Float)
  • b (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
# File 'ext/numo/gsl/rng/gsl_rng.c', line 4204

static VALUE
ran_gumbel2(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    double a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_gumbel2(r , a0, a1));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_gumbel2(r , a0, a1);
        }
        return vna;
    }
}

#hypergeometric(n1, n2, t, [shape]) ⇒ Integer or UInt

This function returns a random integer from the hypergeometric distribution. The probability distribution for hypergeometric random variates is,

p(k) = C(n_1, k) C(n_2, t - k) / C(n_1 + n_2, t)

where C(a,b) = a!/(b!(a-b)!) and $t \leq n_1 + n_2$ t <= n_1 + n_2. The domain of k is $\hboxmax(0,t-n_2), \ldots, \hboxmin(t,n_1)$ max(0,t-n_2), …, min(t,n_1).

If a population contains n_1 elements of type 1'' and n_2 elements oftype 2’’ then the hypergeometric distribution gives the probability of obtaining k elements of ``type 1’’ in t samples from the population without replacement.

Parameters:

  • n1 (Integer)
  • n2 (Integer)
  • t (Integer)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Integer or UInt)

    returns random number



4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
# File 'ext/numo/gsl/rng/gsl_rng.c', line 4627

static VALUE
ran_hypergeometric(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    unsigned int *ptr;
    
    VALUE v0;
    VALUE v1;
    VALUE v2;
    
    unsigned int a0;
    unsigned int a1;
    unsigned int a2;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "31" , &v0, &v1, &v2, &vshape);
    a0 = NUM2UINT(v0);
    a1 = NUM2UINT(v1);
    a2 = NUM2UINT(v2);
    
    if (nargs == 3) {
        return rb_float_new(gsl_ran_hypergeometric(r , a0, a1, a2));
    } else {
        vna = create_new_narray(cUInt,vshape);
        ptr = (unsigned int*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_hypergeometric(r , a0, a1, a2);
        }
        return vna;
    }
}

#landau([shape]) ⇒ Float or DFloat

This function returns a random variate from the Landau distribution. The probability distribution for Landau random variates is defined analytically by the complex integral,

p(x) = (1/(2 \pi i)) \int_[c-i\infty]^[c+i\infty] ds exp(s log(s) + x s) For numerical purposes it is more convenient to use the following equivalent form of the integral,

p(x) = (1/\pi) \int_0^\infty dt \exp(-t \log(t) - x t) \sin(\pi t).

Parameters:

  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3310

static VALUE
ran_landau(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "01" , &vshape);
    
    if (nargs == 0) {
        return rb_float_new(gsl_ran_landau(r ));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_landau(r );
        }
        return vna;
    }
}

#laplace(a, [shape]) ⇒ Float or DFloat

This function returns a random variate from the Laplace distribution with width a. The distribution is,

p(x) dx = [1 \over 2 a] \exp(- x/a ) dx

for -\infty < x < \infty.

Parameters:

  • a (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3058

static VALUE
ran_laplace(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_laplace(r , a0));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_laplace(r , a0);
        }
        return vna;
    }
}

#levy(c, alpha, [shape]) ⇒ Float or DFloat

This function returns a random variate from the Levy symmetric stable distribution with scale c and exponent alpha. The symmetric stable probability distribution is defined by a Fourier transform,

p(x) = [1 \over 2 \pi] \int_[-\infty]^[+\infty] dt \exp(-it x - c t ^alpha)

There is no explicit solution for the form of p(x) and the library does not define a corresponding pdf function. For \alpha = 1 the distribution reduces to the Cauchy distribution. For \alpha = 2 it is a Gaussian distribution with $\sigma = \sqrt2 c$ \sigma = \sqrt[2] c. For \alpha < 1 the tails of the distribution become extremely wide.

The algorithm only works for $0 < \alpha \le 2$ 0 < alpha <= 2.

Parameters:

  • c (Float)
  • alpha (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3364

static VALUE
ran_levy(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    double a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_levy(r , a0, a1));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_levy(r , a0, a1);
        }
        return vna;
    }
}

#logarithmic(p, [shape]) ⇒ Integer or UInt

This function returns a random integer from the logarithmic distribution. The probability distribution for logarithmic random variates is,

p(k) = [-1 \over \log(1-p)] [(p^k \over k)]

for $k \ge 1$ k >= 1.

Parameters:

  • p (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Integer or UInt)

    returns random number



4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
# File 'ext/numo/gsl/rng/gsl_rng.c', line 4682

static VALUE
ran_logarithmic(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    unsigned int *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_logarithmic(r , a0));
    } else {
        vna = create_new_narray(cUInt,vshape);
        ptr = (unsigned int*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_logarithmic(r , a0);
        }
        return vna;
    }
}

#logistic(a, [shape]) ⇒ Float or DFloat

This function returns a random variate from the logistic distribution. The distribution function is,

p(x) dx = [ \exp(-x/a) \over a (1 + \exp(-x/a))^2 ] dx

for -\infty < x < +\infty.

Parameters:

  • a (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3826

static VALUE
ran_logistic(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_logistic(r , a0));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_logistic(r , a0);
        }
        return vna;
    }
}

#lognormal(zeta, sigma, [shape]) ⇒ Float or DFloat

This function returns a random variate from the lognormal distribution. The distribution function is,

p(x) dx = [1 \over x \sqrt[2 \pi \sigma^2] ] \exp(-(\ln(x) - \zeta)^2/2 \sigma^2) dx

for x > 0.

Parameters:

  • zeta (Float)
  • sigma (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3573

static VALUE
ran_lognormal(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    double a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_lognormal(r , a0, a1));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_lognormal(r , a0, a1);
        }
        return vna;
    }
}

#multinomial(N, p[]) ⇒ UInt

This function computes a random sample n[] from the multinomial distribution formed by N trials from an underlying distribution p[K]. The distribution function for n[] is,

P(n_1, n_2, …, n_K) = (N!/(n_1! n_2! … n_K!)) p_1^n_1 p_2^n_2 … p_K^n_K

where ($n_1$, $n_2$, $\ldots$, $n_K$) (n_1, n_2, …, n_K) are nonnegative integers with $\sum_k=1^K n_k =N$ sum_[k=1]^K n_k = N, and $(p_1, p_2, \ldots, p_K)$ (p_1, p_2, …, p_K) is a probability distribution with \sum p_i = 1. If the array p[K] is not normalized then its entries will be treated as weights and normalized appropriately. The arrays n[] and p[] must both be of length K.

Random variates are generated using the conditional binomial method (see C.S. Davis, The computer generation of multinomial random variates, Comp. Stat. Data Anal. 16 (1993) 205–217 for details).

Parameters:

  • N (Integer)
  • p[] (DFloat)

Returns:

  • (UInt)

    n[]



4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
# File 'ext/numo/gsl/rng/gsl_rng.c', line 4469

static VALUE
ran_multinomial(VALUE self, VALUE vN, VALUE vp)
{
    VALUE vn;
    double *p;
    unsigned int *n;
    unsigned int  N;
    narray_t *na;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    N = NUM2UINT(vN);
    vp = cast_1d_contiguous(vp, cDF);
    GetNArray(vp,na);
    p = (double*)na_get_pointer_for_read(vp);
    vn = rb_narray_new(cUInt,na->ndim,na->shape);
    n = (unsigned int*)na_get_pointer_for_write(vn);

    gsl_ran_multinomial(r, na->size, N, p, n);
    RB_GC_GUARD(vp);
    return vn;
}

#pareto(a, b, [shape]) ⇒ Float or DFloat

This function returns a random variate from the Pareto distribution of order a. The distribution function is,

p(x) dx = (a/b) / (x/b)^[a+1] dx

for $x \ge b$ x >= b.

Parameters:

  • a (Float)
  • b (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3875

static VALUE
ran_pareto(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    double a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_pareto(r , a0, a1));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_pareto(r , a0, a1);
        }
        return vna;
    }
}

#pascal(p, n, [shape]) ⇒ Integer or UInt

This function returns a random integer from the Pascal distribution. The Pascal distribution is simply a negative binomial distribution with an integer value of n.

p(k) = [(n + k - 1)! \over k! (n - 1)! ] p^n (1-p)^k

for $k \ge 0$ k >= 0

Parameters:

  • p (Float)
  • n (Integer)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Integer or UInt)

    returns random number



4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
# File 'ext/numo/gsl/rng/gsl_rng.c', line 4512

static VALUE
ran_pascal(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    unsigned int *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    unsigned int a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2UINT(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_pascal(r , a0, a1));
    } else {
        vna = create_new_narray(cUInt,vshape);
        ptr = (unsigned int*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_pascal(r , a0, a1);
        }
        return vna;
    }
}

#poisson(mu, [shape]) ⇒ Integer or UInt

This function returns a random integer from the Poisson distribution with mean mu. The probability distribution for Poisson variates is,

p(k) = [\mu^k \over k!] \exp(-\mu)

for $k \ge 0$ k >= 0.

Parameters:

  • mu (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Integer or UInt)

    returns random number



4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
# File 'ext/numo/gsl/rng/gsl_rng.c', line 4304

static VALUE
ran_poisson(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    unsigned int *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_poisson(r , a0));
    } else {
        vna = create_new_narray(cUInt,vshape);
        ptr = (unsigned int*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_poisson(r , a0);
        }
        return vna;
    }
}

#rayleigh(sigma, [shape]) ⇒ Float or DFloat

This function returns a random variate from the Rayleigh distribution with scale parameter sigma. The distribution is,

p(x) dx = [x \over \sigma^2] \exp(- x^2/(2 \sigma^2)) dx

for x > 0.

Parameters:

  • sigma (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3209

static VALUE
ran_rayleigh(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_rayleigh(r , a0));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_rayleigh(r , a0);
        }
        return vna;
    }
}

#rayleigh_tail(a, sigma, [shape]) ⇒ Float or DFloat

This function returns a random variate from the tail of the Rayleigh distribution with scale parameter sigma and a lower limit of a. The distribution is,

p(x) dx = [x \over \sigma^2] \exp ((a^2 - x^2) /(2 \sigma^2)) dx

for x > a.

Parameters:

  • a (Float)
  • sigma (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3258

static VALUE
ran_rayleigh_tail(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    double a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_rayleigh_tail(r , a0, a1));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_rayleigh_tail(r , a0, a1);
        }
        return vna;
    }
}

#tdist(nu, [shape]) ⇒ Float or DFloat

This function returns a random variate from the t-distribution. The distribution function is,

p(x) dx = [\Gamma((\nu + 1)/2) \over \sqrt[\pi \nu] \Gamma(\nu/2)] (1 + x^2/\nu)^[-(\nu + 1)/2] dx

for -\infty < x < +\infty.

Parameters:

  • nu (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
# File 'ext/numo/gsl/rng/gsl_rng.c', line 3727

static VALUE
ran_tdist(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_tdist(r , a0));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_tdist(r , a0);
        }
        return vna;
    }
}

#ugaussian([shape]) ⇒ Float or DFloat

These functions compute results for the unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of one, sigma = 1.

Parameters:

  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
# File 'ext/numo/gsl/rng/gsl_rng.c', line 2758

static VALUE
ran_ugaussian(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "01" , &vshape);
    
    if (nargs == 0) {
        return rb_float_new(gsl_ran_ugaussian(r ));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_ugaussian(r );
        }
        return vna;
    }
}

#ugaussian_ratio_method([shape]) ⇒ Float or DFloat

These functions compute results for the unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of one, sigma = 1.

Parameters:

  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
# File 'ext/numo/gsl/rng/gsl_rng.c', line 2798

static VALUE
ran_ugaussian_ratio_method(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "01" , &vshape);
    
    if (nargs == 0) {
        return rb_float_new(gsl_ran_ugaussian_ratio_method(r ));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_ugaussian_ratio_method(r );
        }
        return vna;
    }
}

#ugaussian_tail(a, [shape]) ⇒ Float or DFloat

These functions compute results for the tail of a unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of one, sigma = 1.

Parameters:

  • a (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
# File 'ext/numo/gsl/rng/gsl_rng.c', line 2899

static VALUE
ran_ugaussian_tail(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    
    double a0;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "11" , &v0, &vshape);
    a0 = NUM2DBL(v0);
    
    if (nargs == 1) {
        return rb_float_new(gsl_ran_ugaussian_tail(r , a0));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_ugaussian_tail(r , a0);
        }
        return vna;
    }
}

#weibull(a, b, [shape]) ⇒ Float or DFloat

This function returns a random variate from the Weibull distribution. The distribution function is,

p(x) dx = [b \over a^b] x^[b-1] \exp(-(x/a)^b) dx

for $x \ge 0$ x >= 0.

Parameters:

  • a (Float)
  • b (Float)
  • shape (Array or Integer)

    (optional) shape for result NArray

Returns:

  • (Float or DFloat)

    returns random number



4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
# File 'ext/numo/gsl/rng/gsl_rng.c', line 4102

static VALUE
ran_weibull(int argc, VALUE *argv, VALUE self)
{
    VALUE vshape, vna;
    size_t i, size;
    int nargs;
    double *ptr;
    
    VALUE v0;
    VALUE v1;
    
    double a0;
    double a1;
    gsl_rng *r;

    TypedData_Get_Struct(self, gsl_rng, &rng_data_type, r);

    nargs = rb_scan_args(argc, argv, "21" , &v0, &v1, &vshape);
    a0 = NUM2DBL(v0);
    a1 = NUM2DBL(v1);
    
    if (nargs == 2) {
        return rb_float_new(gsl_ran_weibull(r , a0, a1));
    } else {
        vna = create_new_narray(cDF,vshape);
        ptr = (double*)na_get_pointer_for_write(vna);
        size = RNARRAY_SIZE(vna);
        for (i=0; i<size; i++) {
            ptr[i] = gsl_ran_weibull(r , a0, a1);
        }
        return vna;
    }
}