Class: Numo::GSL::SpMatrix
- Inherits:
-
Object
- Object
- Numo::GSL::SpMatrix
- Defined in:
- ext/numo/gsl/spmatrix/gsl_spmatrix.c
Constant Summary
- CCS =
This flag specifies compressed column storage.
INT2FIX(GSL_SPMATRIX_CCS)
- CRS =
This flag specifies compressed row storage.
INT2FIX(GSL_SPMATRIX_CRS)
- TRIPLET =
This flag specifies triplet storage.
INT2FIX(GSL_SPMATRIX_TRIPLET)
Class Method Summary collapse
-
.d2sp(nary) ⇒ Numo::GSL::SpMatrix
This function converts the dense matrix A into sparse triplet format and stores the result in S.
-
.new(n1, n2, [nzmax,sptype]) ⇒ Object
This function allocates a sparse matrix of size n1-by-n2 and initializes it to all zeros.
Instance Method Summary collapse
-
#add(other) ⇒ Numo::GSL::SpMatrix
This function computes the sum c = a + b.
-
#ccs ⇒ Numo::GSL::SpMatrix
This function creates a sparse matrix in compressed column format from the input sparse matrix T which must be in triplet format.
-
#crs ⇒ Numo::GSL::SpMatrix
This function creates a sparse matrix in compressed row format from the input sparse matrix T which must be in triplet format.
-
#equal(b) ⇒ Numo::GSL::SpMatrix
This function returns 1 if the matrices a and b are equal (by comparison of element values) and 0 otherwise.
-
#get(i, j) ⇒ DFloat
This function returns element (i,j) of the matrix m.
-
#memcpy(src) ⇒ Numo::GSL::SpMatrix
This function copies the elements of the sparse matrix src into dest.
-
#minmax ⇒ Array
This function returns the minimum and maximum elements of the matrix m, storing them in min_out and max_out, and searching only the non-zero values.
-
#nnz ⇒ Integer
This function returns the number of non-zero elements in m.
-
#realloc(m) ⇒ Numo::GSL::SpMatrix
This function reallocates the storage space for m to accomodate nzmax non-zero elements.
-
#scale(x) ⇒ Numo::GSL::SpMatrix
This function scales all elements of the matrix m by the constant factor x.
-
#set(i, j, j) ⇒ DFloat
This function sets element (i,j) of the matrix m to the value x.
-
#set_zero ⇒ Object
This function sets (or resets) all the elements of the matrix m to zero.
-
#sp2d ⇒ DFloat
This function converts the sparse matrix S into a dense matrix and stores the result in A.
-
#transpose ⇒ Object
This function replaces the matrix m by its transpose, preserving the storage format of the input matrix.
-
#transpose2 ⇒ Object
This function replaces the matrix m by its transpose, but changes the storage format for compressed matrix inputs.
-
#transpose_memcpy(src) ⇒ Numo::GSL::SpMatrix
This function copies the transpose of the sparse matrix src into dest.
Class Method Details
.d2sp(nary) ⇒ Numo::GSL::SpMatrix
This function converts the dense matrix A into sparse triplet format and stores the result in S.
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 536
static VALUE
spmatrix_s_d2sp(VALUE klass, VALUE nary)
{
gsl_spmatrix *s;
gsl_matrix *m;
narray_t *na;
nary = cast_2d_contiguous(nary,cDF);
GetNArray(nary,na);
ALLOCA_GSL_MATRIX_FROM_NARRAY_R(nary,m);
s = gsl_spmatrix_alloc(na->shape[0], na->shape[1]);
gsl_spmatrix_d2sp(s, m);
RB_GC_GUARD(nary);
return TypedData_Wrap_Struct(cSpMatrix, &spmatrix_data_type, (void*)s);
}
|
.new(n1, n2, [nzmax,sptype]) ⇒ Object
This function allocates a sparse matrix of size n1-by-n2 and initializes it to all zeros. If the size of the matrix is not known at allocation time, both n1 and n2 may be set to 1, and they will automatically grow as elements are added to the matrix. The parameter nzmax specifies the maximum number of non-zero elements which will be added to the matrix. It does not need to be precisely known in advance, since storage space will automatically grow using gsl_spmatrix_realloc if nzmax is not large enough. Accurate knowledge of this parameter reduces the number of reallocation calls required. The parameter sptype specifies the storage format of the sparse matrix. Possible values are The allocated gsl_spmatrix structure is of size O(nzmax).
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 112
static VALUE
spmatrix_s_new(int argc, VALUE *argv, VALUE klass)
{
gsl_spmatrix *w;
int narg;
size_t sptype = GSL_SPMATRIX_TRIPLET;
VALUE n1, n2, v3, v4;
narg = rb_scan_args(argc,argv,"22",&n1,&n2,&v3,&v4);
switch(narg) {
case 4:
sptype = NUM2SIZET(v4);
case 3:
w = gsl_spmatrix_alloc_nzmax(NUM2SIZET(n1),NUM2SIZET(n2),NUM2SIZET(v3),sptype);
break;
case 2:
w = gsl_spmatrix_alloc(NUM2SIZET(n1),NUM2SIZET(n2));
break;
default:
rb_raise(rb_eArgError,"invalid number of argument: %d for 2..4",argc);
}
if (!w) {
rb_raise(rb_eNoMemError,"fail to allocate struct");
}
return TypedData_Wrap_Struct(cSpMatrix, &spmatrix_data_type, (void*)w);
}
|
Instance Method Details
#add(other) ⇒ Numo::GSL::SpMatrix
This function computes the sum c = a + b. The three matrices must have the same dimensions and be stored in a compressed format.
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 376
static VALUE
spmatrix_add(VALUE self, VALUE other)
{
gsl_spmatrix *a, *b, *c;
VALUE result;
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, a);
TypedData_Get_Struct(other, gsl_spmatrix, &spmatrix_data_type, b);
c = gsl_spmatrix_alloc_nzmax(a->size1, a->size2, a->nzmax+b->nzmax, a->sptype);
result = TypedData_Wrap_Struct(cSpMatrix, &spmatrix_data_type, (void*)c);
gsl_spmatrix_add(c,a,b);
return result;
}
|
#ccs ⇒ Numo::GSL::SpMatrix
This function creates a sparse matrix in compressed column format from the input sparse matrix T which must be in triplet format. A pointer to a newly allocated matrix is returned. The calling function should free the newly allocated matrix when it is no longer needed.
486 487 488 489 490 491 492 493 494 495 496 497 498 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 486
static VALUE
spmatrix_ccs(VALUE self)
{
gsl_spmatrix *x, *w;
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, x);
w = gsl_spmatrix_ccs(x);
if (!w) {
rb_raise(rb_eNoMemError,"fail to allocate struct");
}
return TypedData_Wrap_Struct(cSpMatrix, &spmatrix_data_type, (void*)w);
}
|
#crs ⇒ Numo::GSL::SpMatrix
This function creates a sparse matrix in compressed row format from the input sparse matrix T which must be in triplet format. A pointer to a newly allocated matrix is returned. The calling function should free the newly allocated matrix when it is no longer needed.
511 512 513 514 515 516 517 518 519 520 521 522 523 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 511
static VALUE
spmatrix_crs(VALUE self)
{
gsl_spmatrix *x, *w;
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, x);
w = gsl_spmatrix_crs(x);
if (!w) {
rb_raise(rb_eNoMemError,"fail to allocate struct");
}
return TypedData_Wrap_Struct(cSpMatrix, &spmatrix_data_type, (void*)w);
}
|
#equal(b) ⇒ Numo::GSL::SpMatrix
This function returns 1 if the matrices a and b are equal (by comparison of element values) and 0 otherwise. The matrices a and b must be in the same sparse storage format for comparison.
442 443 444 445 446 447 448 449 450 451 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 442
static VALUE
spmatrix_equal(VALUE self, VALUE other)
{
gsl_spmatrix *w, *x;
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, w);
TypedData_Get_Struct(other, gsl_spmatrix, &spmatrix_data_type, x);
gsl_spmatrix_equal(w,x);
return self;
}
|
#get(i, j) ⇒ DFloat
This function returns element (i,j) of the matrix m. The matrix may be in triplet or compressed format.
199 200 201 202 203 204 205 206 207 208 209 210 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 199
static VALUE
spmatrix_get(VALUE self, VALUE v1, VALUE v2)
{
gsl_spmatrix *w;
ndfunc_arg_in_t ain[2] = {{cSZ,0},{cSZ,0}};
ndfunc_arg_out_t aout[1] = {{cDF,0}};
ndfunc_t ndf = {iter_spmatrix_get, STRIDE_LOOP|NDF_EXTRACT, 2,1, ain,aout};
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, w);
return na_ndloop3(&ndf, w, 2, v1, v2);
}
|
#memcpy(src) ⇒ Numo::GSL::SpMatrix
This function copies the elements of the sparse matrix src into dest. The two matrices must have the same dimensions and be in the same storage format.
289 290 291 292 293 294 295 296 297 298 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 289
static VALUE
spmatrix_memcpy(VALUE self, VALUE other)
{
gsl_spmatrix *w, *x;
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, w);
TypedData_Get_Struct(other, gsl_spmatrix, &spmatrix_data_type, x);
gsl_spmatrix_memcpy(w,x);
return self;
}
|
#minmax ⇒ Array
This function returns the minimum and maximum elements of the matrix m, storing them in min_out and max_out, and searching only the non-zero values.
463 464 465 466 467 468 469 470 471 472 473 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 463
static VALUE
spmatrix_minmax(VALUE self)
{
gsl_spmatrix *w;
double d1, d2;
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, w);
gsl_spmatrix_minmax(w, &d1, &d2);
return rb_assoc_new(DBL2NUM(d1),DBL2NUM(d2));
}
|
#nnz ⇒ Integer
This function returns the number of non-zero elements in m.
421 422 423 424 425 426 427 428 429 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 421
static VALUE
spmatrix_nnz(VALUE self)
{
gsl_spmatrix *w;
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, w);
return SIZET2NUM(gsl_spmatrix_nnz(w));
}
|
#realloc(m) ⇒ Numo::GSL::SpMatrix
This function reallocates the storage space for m to accomodate nzmax non-zero elements. It is typically called internally by gsl_spmatrix_set if the user wants to add more elements to the sparse matrix than the previously specified nzmax.
151 152 153 154 155 156 157 158 159 160 161 162 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 151
static VALUE
spmatrix_realloc(VALUE self, VALUE v1)
{
gsl_spmatrix *w;
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, w);
gsl_spmatrix_realloc(NUM2SIZET(v1),w);
return self;
}
|
#scale(x) ⇒ Numo::GSL::SpMatrix
This function scales all elements of the matrix m by the constant factor x. The result m(i,j) \leftarrow x m(i,j) is stored in m.
402 403 404 405 406 407 408 409 410 411 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 402
static VALUE
spmatrix_scale(VALUE self, VALUE v1)
{
gsl_spmatrix *w;
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, w);
gsl_spmatrix_scale(w, NUM2DBL(v1));
return self;
}
|
#set(i, j, j) ⇒ DFloat
This function sets element (i,j) of the matrix m to the value x. The matrix must be in triplet representation.
248 249 250 251 252 253 254 255 256 257 258 259 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 248
static VALUE
spmatrix_set(VALUE self, VALUE v1, VALUE v2, VALUE v3)
{
gsl_spmatrix *w;
ndfunc_arg_in_t ain[3] = {{cSZ,0},{cSZ,0},{cDF,0}};
ndfunc_t ndf = {iter_spmatrix_set, STRIDE_LOOP|NDF_EXTRACT, 3,0, ain,0};
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, w);
na_ndloop3(&ndf, w, 3, v1, v2, v3);
return self;
}
|
#set_zero ⇒ Object
This function sets (or resets) all the elements of the matrix m to zero.
268 269 270 271 272 273 274 275 276 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 268
static VALUE
spmatrix_set_zero(VALUE self)
{
gsl_spmatrix *w;
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, w);
gsl_spmatrix_set_zero(w);
return self;
}
|
#sp2d ⇒ DFloat
This function converts the sparse matrix S into a dense matrix and stores the result in A. S must be in triplet format.
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 564
static VALUE
spmatrix_sp2d(VALUE self)
{
gsl_spmatrix *s;
gsl_matrix *m;
size_t shape[2];
VALUE result;
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, s);
shape[0] = s->size1;
shape[1] = s->size2;
result = rb_narray_new(cDF, 2, shape);
ALLOCA_GSL_MATRIX_FROM_NARRAY_W(result,m);
gsl_spmatrix_sp2d(m,s);
return result;
}
|
#transpose ⇒ Object
This function replaces the matrix m by its transpose, preserving the storage format of the input matrix. Currently, only triplet matrix inputs are supported.
332 333 334 335 336 337 338 339 340 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 332
static VALUE
spmatrix_transpose(VALUE self)
{
gsl_spmatrix *w;
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, w);
gsl_spmatrix_transpose(w);
return self;
}
|
#transpose2 ⇒ Object
This function replaces the matrix m by its transpose, but changes the storage format for compressed matrix inputs. Since compressed column storage is the transpose of compressed row storage, this function simply converts a CCS matrix to CRS and vice versa. This is the most efficient way to transpose a compressed storage matrix, but the user should note that the storage format of their compressed matrix will change on output. For triplet matrices, the output matrix is also in triplet storage.
356 357 358 359 360 361 362 363 364 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 356
static VALUE
spmatrix_transpose2(VALUE self)
{
gsl_spmatrix *w;
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, w);
gsl_spmatrix_transpose2(w);
return self;
}
|
#transpose_memcpy(src) ⇒ Numo::GSL::SpMatrix
This function copies the transpose of the sparse matrix src into dest. The dimensions of dest must match the transpose of the matrix src. Also, both matrices must use the same sparse storage format.
312 313 314 315 316 317 318 319 320 321 |
# File 'ext/numo/gsl/spmatrix/gsl_spmatrix.c', line 312
static VALUE
spmatrix_transpose_memcpy(VALUE self, VALUE other)
{
gsl_spmatrix *w, *x;
TypedData_Get_Struct(self, gsl_spmatrix, &spmatrix_data_type, w);
TypedData_Get_Struct(other, gsl_spmatrix, &spmatrix_data_type, x);
gsl_spmatrix_transpose_memcpy(w,x);
return self;
}
|