Class: Numo::NArray

Inherits:
Object
  • Object
show all
Defined in:
ext/numo/narray/narray.c,
lib/numo/narray/extra.rb

Defined Under Namespace

Classes: CastError, DimensionError, OperationError, ShapeError

Constant Summary

VERSION =
rb_str_new2(NARRAY_VERSION)

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#Numo::DataType.new(shape) ⇒ Object #Numo::DataType.new(size1, size2, ...) ⇒ Object

Constructs a narray using the given DataType and shape or sizes.



316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# File 'ext/numo/narray/narray.c', line 316

static VALUE
na_initialize(VALUE self, VALUE args)
{
    VALUE v;
    size_t *shape=NULL;
    int ndim;

    if (RARRAY_LEN(args) == 1) {
        v = RARRAY_AREF(args,0);
        if (TYPE(v) != T_ARRAY) {
            v = args;
        }
    } else {
        v = args;
    }
    ndim = RARRAY_LEN(v);
    if (ndim > NA_MAX_DIMENSION) {
        rb_raise(rb_eArgError,"ndim=%d exceeds maximum dimension",ndim);
    }
    shape = ALLOCA_N(size_t, ndim);
    // setup size_t shape[] from VALUE shape argument
    na_array_to_internal_shape(self, v, shape);
    na_setup(self, ndim, shape);

    return self;
}

Class Method Details

.[](elements) ⇒ NArray

Generate NArray object. NArray datatype is automatically selected.

Parameters:

  • elements (Numeric, Array)

Returns:



388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# File 'ext/numo/narray/array.c', line 388

static VALUE
nary_s_bracket(VALUE klass, VALUE ary)
{
    VALUE dtype=Qnil;

    if (TYPE(ary)!=T_ARRAY) {
        rb_bug("Argument is not array");
    }

    dtype = na_ary_composition_dtype(ary);

    if (RTEST(rb_obj_is_kind_of(dtype,rb_cClass))) {
        if (RTEST(rb_funcall(dtype,rb_intern("<="),1,cNArray))) {
            return rb_funcall(dtype,rb_intern("cast"),1,ary);
        }
    }
    rb_raise(nary_eCastError, "cannot convert to NArray");
    return Qnil;
}

.array_type(ary) ⇒ Object



374
375
376
377
378
# File 'ext/numo/narray/array.c', line 374

static VALUE
na_s_array_type(VALUE mod, VALUE ary)
{
    return na_ary_composition_dtype(ary);
}

.byte_sizeNumeric

Returns byte size of one element of NArray.

Returns:

  • (Numeric)

    byte size.



1174
1175
1176
1177
1178
# File 'ext/numo/narray/narray.c', line 1174

static VALUE
nary_s_byte_size(VALUE type)
{
    return rb_const_get(type, rb_intern(ELEMENT_BYTE_SIZE));
}

.concatenate(arrays, axis: 0) ⇒ Object

Examples:

p a = Numo::DFloat[[1, 2], [3, 4]]
# Numo::DFloat#shape=[2,2]
# [[1, 2],
#  [3, 4]]

p b = Numo::DFloat[[5, 6]]
# Numo::DFloat#shape=[1,2]
# [[5, 6]]

p Numo::NArray.concatenate([a,b],axis:0)
# Numo::DFloat#shape=[3,2]
# [[1, 2],
#  [3, 4],
#  [5, 6]]

p Numo::NArray.concatenate([a,b.transpose], axis:1)
# Numo::DFloat#shape=[2,3]
# [[1, 2, 5],
#  [3, 4, 6]]


25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# File 'lib/numo/narray/extra.rb', line 25

def self.concatenate(arrays,axis:0)
  klass = (self==NArray) ? NArray.array_type(arrays) : self
  nd = 0
  arrays.map! do |a|
    case a
    when NArray
      # ok
    when Numeric
      a = klass.new(1).store(a)
    when Array
      a = klass.cast(a)
    else
      raise TypeError,"not Numo::NArray"
    end
    if a.ndim > nd
      nd = a.ndim
    end
    a
  end
  if axis < 0
    axis += nd
  end
  if axis < 0 || axis >= nd
    raise ArgumentError,"axis is out of range"
  end
  new_shape = nil
  sum_size = 0
  arrays.each do |a|
    a_shape = a.shape
    if nd != a_shape.size
      a_shape = [1]*(nd-a_shape.size) + a_shape
    end
    sum_size += a_shape.delete_at(axis)
    if new_shape
      if new_shape != a_shape
        raise ShapeError,"shape mismatch"
      end
    else
      new_shape = a_shape
    end
  end
  new_shape.insert(axis,sum_size)
  result = klass.zeros(*new_shape)
  lst = 0
  refs = [true] * nd
  arrays.each do |a|
    fst = lst
    lst = fst + (a.shape[axis-nd]||1)
    refs[axis] = fst...lst
    result[*refs] = a
  end
  result
end

.debug=(flag) ⇒ Object



1664
1665
1666
1667
1668
# File 'ext/numo/narray/narray.c', line 1664

VALUE na_debug_set(VALUE mod, VALUE flag)
{
    na_debug_flag = RTEST(flag);
    return Qnil;
}

.dstack(arrays) ⇒ Object



87
88
89
# File 'lib/numo/narray/extra.rb', line 87

def self.dstack(arrays)
  self.concatenate(arrays,axis:2)
end

.eye(n) ⇒ Numo::NArray

Returns a NArray with shape=(n,n) whose diagonal elements are 1, otherwise 0.

Examples:

a = Numo::DFloat.eye(3)
=> Numo::DFloat#shape=[3,3]
[[1, 0, 0],
 [0, 1, 0],
 [0, 0, 1]]

Parameters:

  • n (Integer)

    Size of NArray. Creates 2-D NArray with shape=(n,n)

Returns:



529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
# File 'ext/numo/narray/narray.c', line 529

static VALUE
na_s_eye(int argc, VALUE *argv, VALUE klass)
{
    VALUE obj;
    VALUE tmp[2];

    if (argc==0) {
        rb_raise(rb_eArgError,"No argument");
    }
    else if (argc==1) {
        tmp[0] = tmp[1] = argv[0];
        argv = tmp;
        argc = 2;
    }
    obj = rb_class_new_instance(argc, argv, klass);
    return rb_funcall(obj, rb_intern("eye"), 0);
}

.from_binary(string, [shape]) ⇒ Numo::NArray

Returns a new 1-D array initialized from binary raw data in a string.

Parameters:

  • string (String)

    Binary raw data.

  • shape (Array)

    array of integers representing array shape.

Returns:



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
# File 'ext/numo/narray/narray.c', line 1188

static VALUE
nary_s_from_binary(int argc, VALUE *argv, VALUE type)
{
    size_t len, str_len, byte_size;
    size_t *shape;
    char *ptr;
    int   i, nd, narg;
    VALUE vstr, vshape, vna;
    VALUE velmsz;

    narg = rb_scan_args(argc,argv,"11",&vstr,&vshape);
    Check_Type(vstr,T_STRING);
    str_len = RSTRING_LEN(vstr);
    velmsz = rb_const_get(type, rb_intern(ELEMENT_BYTE_SIZE));
    if (narg==2) {
        switch(TYPE(vshape)) {
        case T_FIXNUM:
            nd = 1;
            len = NUM2SIZET(vshape);
            shape = &len;
            break;
        case T_ARRAY:
            nd = RARRAY_LEN(vshape);
            if (nd == 0 || nd > NA_MAX_DIMENSION) {
                rb_raise(nary_eDimensionError,"too long or empty shape (%d)", nd);
            }
            shape = ALLOCA_N(size_t,nd);
            len = 1;
            for (i=0; i<nd; ++i) {
                len *= shape[i] = NUM2SIZET(RARRAY_AREF(vshape,i));
            }
            break;
        default:
            rb_raise(rb_eArgError,"second argument must be size or shape");
        }
        if (FIXNUM_P(velmsz)) {
            byte_size = len * NUM2SIZET(velmsz);
        } else {
            byte_size = ceil(len * NUM2DBL(velmsz));
        }
        if (byte_size > str_len) {
            rb_raise(rb_eArgError, "specified size is too large");
        }
    } else {
        nd = 1;
        if (FIXNUM_P(velmsz)) {
            len = str_len / NUM2SIZET(velmsz);
            byte_size = len * NUM2SIZET(velmsz);
        } else {
            len = floor(str_len / NUM2DBL(velmsz));
            byte_size = str_len;
        }
        if (len == 0) {
            rb_raise(rb_eArgError, "string is empty or too short");
        }
        shape = ALLOCA_N(size_t,nd);
        shape[0] = len;
    }

    vna = rb_narray_new(type, nd, shape);
    ptr = na_get_pointer_for_write(vna);

    memcpy(ptr, RSTRING_PTR(vstr), byte_size);

    return vna;
}

.hstack(arrays) ⇒ Object



83
84
85
# File 'lib/numo/narray/extra.rb', line 83

def self.hstack(arrays)
  self.concatenate(arrays,axis:1)
end

.inspect_colsInteger or nil

Returns the number of cols used for NArray#inspect

Returns:

  • (Integer or nil)

    the number of cols.



1719
1720
1721
1722
1723
1724
1725
1726
# File 'ext/numo/narray/narray.c', line 1719

static VALUE na_inspect_cols(VALUE mod)
{
    if (numo_na_inspect_cols > 0) {
        return INT2NUM(numo_na_inspect_cols);
    } else {
        return Qnil;
    }
}

.inspect_cols=(cols) ⇒ nil

Set the number of cols used for NArray#inspect

Parameters:

  • cols (Integer or nil)

    the number of cols

Returns:

  • (nil)


1734
1735
1736
1737
1738
1739
1740
1741
1742
# File 'ext/numo/narray/narray.c', line 1734

static VALUE na_inspect_cols_set(VALUE mod, VALUE num)
{
    if (RTEST(num)) {
        numo_na_inspect_cols = NUM2INT(num);
    } else {
        numo_na_inspect_cols = 0;
    }
    return Qnil;
}

.inspect_rowsInteger or nil

Returns the number of rows used for NArray#inspect

Returns:

  • (Integer or nil)

    the number of rows.



1689
1690
1691
1692
1693
1694
1695
1696
# File 'ext/numo/narray/narray.c', line 1689

static VALUE na_inspect_rows(VALUE mod)
{
    if (numo_na_inspect_rows > 0) {
        return INT2NUM(numo_na_inspect_rows);
    } else {
        return Qnil;
    }
}

.inspect_rows=(rows) ⇒ nil

Set the number of rows used for NArray#inspect

Parameters:

  • rows (Integer or nil)

    the number of rows

Returns:

  • (nil)


1704
1705
1706
1707
1708
1709
1710
1711
1712
# File 'ext/numo/narray/narray.c', line 1704

static VALUE na_inspect_rows_set(VALUE mod, VALUE num)
{
    if (RTEST(num)) {
        numo_na_inspect_rows = NUM2INT(num);
    } else {
        numo_na_inspect_rows = 0;
    }
    return Qnil;
}

.linspace(x1, x2, [n]) ⇒ Numo::NArray

Returns an array of N linearly spaced points between x1 and x2. This singleton method is valid not for NArray class itself but for typed NArray subclasses, e.g., DFloat, Int64.

Examples:

a = Numo::DFloat.linspace(-5,5,7)
=> Numo::DFloat#shape=[7]
[-5, -3.33333, -1.66667, 0, 1.66667, 3.33333, 5]

Parameters:

  • x1 (Numeric)

    The start value

  • x2 (Numeric)

    The end value

  • n (Integer)

    The number of elements. (default is 100).

Returns:



450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# File 'ext/numo/narray/narray.c', line 450

static VALUE
na_s_linspace(int argc, VALUE *argv, VALUE klass)
{
    VALUE obj, vx1, vx2, vstep, vsize;
    double n;
    int narg;

    narg = rb_scan_args(argc,argv,"21",&vx1,&vx2,&vsize);
    if (narg==3) {
        n = NUM2DBL(vsize);
    } else {
        n = 100;
        vsize = INT2FIX(100);
    }

    obj = rb_funcall(vx2, '-', 1, vx1);
    vstep = rb_funcall(obj, '/', 1, DBL2NUM(n-1));

    obj = rb_class_new_instance(1, &vsize, klass);
    return rb_funcall(obj, rb_intern("seq"), 2, vx1, vstep);
}

.logspace(a, b, [n, base]) ⇒ Numo::NArray

Returns an array of N logarithmically spaced points between 10^a and 10^b. This singleton method is valid not for NArray having logseq method, i.e., DFloat, SFloat, DComplex, and SComplex.

Examples:

Numo::DFloat.logspace(4,0,5,2)
=> Numo::DFloat#shape=[5]
   [16, 8, 4, 2, 1]
Numo::DComplex.logspace(0,1i*Math::PI,5,Math::E)
=> Numo::DComplex#shape=[5]
   [1+4.44659e-323i, 0.707107+0.707107i, 6.12323e-17+1i, -0.707107+0.707107i, ...]

Parameters:

  • a (Numeric)

    The start value

  • b (Numeric)

    The end value

  • n (Integer)

    The number of elements. (default is 50)

  • base (Numeric)

    The base of log space. (default is 10)

Returns:



492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# File 'ext/numo/narray/narray.c', line 492

static VALUE
na_s_logspace(int argc, VALUE *argv, VALUE klass)
{
    VALUE obj, vx1, vx2, vstep, vsize, vbase;
    double n;

    rb_scan_args(argc,argv,"22",&vx1,&vx2,&vsize,&vbase);
    if (vsize == Qnil) {
        vsize = INT2FIX(50);
        n = 50;
    } else {
        n = NUM2DBL(vsize);
    }
    if (vbase == Qnil) {
        vbase = DBL2NUM(10);
    }

    obj = rb_funcall(vx2, '-', 1, vx1);
    vstep = rb_funcall(obj, '/', 1, DBL2NUM(n-1));

    obj = rb_class_new_instance(1, &vsize, klass);
    return rb_funcall(obj, rb_intern("logseq"), 3, vx1, vstep, vbase);
}

.ones(shape) ⇒ Object .ones(size1, size2, ...) ⇒ Object

Returns a one-filled narray with shape. This singleton method is valid not for NArray class itself but for typed NArray subclasses, e.g., DFloat, Int64.

Examples:

a = Numo::DFloat.ones(3,5)
=> Numo::DFloat#shape=[3,5]
[[1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1]]


425
426
427
428
429
430
431
# File 'ext/numo/narray/narray.c', line 425

static VALUE
na_s_ones(int argc, VALUE *argv, VALUE klass)
{
    VALUE obj;
    obj = rb_class_new_instance(argc, argv, klass);
    return rb_funcall(obj, rb_intern("fill"), 1, INT2FIX(1));
}

.profileObject



1672
1673
1674
1675
# File 'ext/numo/narray/narray.c', line 1672

VALUE na_profile(VALUE mod)
{
    return rb_float_new(na_profile_value);
}

.profile=(val) ⇒ Object



1677
1678
1679
1680
1681
# File 'ext/numo/narray/narray.c', line 1677

VALUE na_profile_set(VALUE mod, VALUE val)
{
    na_profile_value = NUM2DBL(val);
    return val;
}

.srand(*args) ⇒ Object



50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# File 'ext/numo/narray/rand.c', line 50

static VALUE
 nary_s_srand(int argc, VALUE *argv, VALUE obj)
{
    VALUE vseed;
    u_int64_t seed;

    //rb_secure(4);
    if (rb_scan_args(argc, argv, "01", &vseed) == 0) {
        seed = random_seed();
    }
    else {
        seed = NUM2UINT64(vseed);
    }
    init_gen_rand(seed);

    return Qnil;
}

.upcast(type2) ⇒ Object




1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
# File 'ext/numo/narray/narray.c', line 1110

VALUE
numo_na_upcast(VALUE type1, VALUE type2)
{
    VALUE upcast_hash;
    VALUE result_type;

    if (type1==type2) {
        return type1;
    }
    upcast_hash = rb_const_get(type1, rb_intern("UPCAST"));
    result_type = rb_hash_aref(upcast_hash, type2);
    if (NIL_P(result_type)) {
        if (TYPE(type2)==T_CLASS) {
            if (RTEST(rb_class_inherited_p(type2,cNArray))) {
                upcast_hash = rb_const_get(type2, rb_intern("UPCAST"));
                result_type = rb_hash_aref(upcast_hash, type1);
            }
        }
    }
    return result_type;
}

.vstack(arrays) ⇒ Object



79
80
81
# File 'lib/numo/narray/extra.rb', line 79

def self.vstack(arrays)
  self.concatenate(arrays,axis:0)
end

.zeros(shape) ⇒ Object .zeros(size1, size2, ...) ⇒ Object

Returns a zero-filled narray with shape. This singleton method is valid not for NArray class itself but for typed NArray subclasses, e.g., DFloat, Int64.

Examples:

a = Numo::DFloat.zeros(3,5)
=> Numo::DFloat#shape=[3,5]
[[0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0]]


401
402
403
404
405
406
407
# File 'ext/numo/narray/narray.c', line 401

static VALUE
na_s_zeros(int argc, VALUE *argv, VALUE klass)
{
    VALUE obj;
    obj = rb_class_new_instance(argc, argv, klass);
    return rb_funcall(obj, rb_intern("fill"), 1, INT2FIX(0));
}

Instance Method Details

#==(other) ⇒ Boolean

Equality of self and other in view of numerical array. i.e., both arrays have same shape and corresponding elements are equal.

Parameters:

  • other (Object)

Returns:

  • (Boolean)

    true if self and other is equal.



1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
# File 'ext/numo/narray/narray.c', line 1752

VALUE
na_equal(VALUE self, volatile VALUE other)
{
    volatile VALUE vbool;
    narray_t *na1, *na2;
    int i;

    GetNArray(self,na1);

    if (!rb_obj_is_kind_of(other,cNArray)) {
        other = rb_funcall(CLASS_OF(self), rb_intern("cast"), 1, other);
    }

    GetNArray(other,na2);
    if (na1->ndim != na2->ndim) {
        return Qfalse;
    }
    for (i=0; i<na1->ndim; i++) {
        if (na1->shape[i] != na2->shape[i]) {
            return Qfalse;
        }
    }
    vbool = rb_funcall(self, rb_intern("eq"), 1, other);
    return (rb_funcall(vbool, rb_intern("count_false"), 0)==INT2FIX(0)) ? Qtrue : Qfalse;
}

#byte_sizeInteger

Returns total byte size of NArray.

Returns:

  • (Integer)

    byte size.



1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
# File 'ext/numo/narray/narray.c', line 1156

static VALUE
nary_byte_size(VALUE self)
{
    VALUE velmsz;
    narray_t *na;

    GetNArray(self,na);
    velmsz = rb_const_get(CLASS_OF(self), rb_intern(ELEMENT_BYTE_SIZE));
    if (FIXNUM_P(velmsz)) {
        return SIZET2NUM(NUM2SIZET(velmsz) * na->size);
    }
    return SIZET2NUM(ceil(NUM2DBL(velmsz) * na->size));
}

#byte_swapped?Boolean Also known as: network_order?

Return true if byte swapped.

Returns:

  • (Boolean)


1593
1594
1595
1596
1597
1598
# File 'ext/numo/narray/narray.c', line 1593

VALUE na_byte_swapped_p( VALUE self )
{
    if (TEST_BYTE_SWAPPED(self))
      return Qtrue;
    return Qfalse;
}

#cast_to(datatype) ⇒ Numo::NArray

Cast self to another NArray datatype.

Parameters:

  • datatype (Class)

    NArray datatype.

Returns:



1420
1421
1422
1423
1424
# File 'ext/numo/narray/narray.c', line 1420

static VALUE
nary_cast_to(VALUE obj, VALUE type)
{
    return rb_funcall(type, rb_intern("cast"), 1, obj);
}

#check_axis(axis) ⇒ Object



399
400
401
402
403
404
405
406
407
# File 'lib/numo/narray/extra.rb', line 399

def check_axis(axis)
  if axis < 0
    axis += ndim
  end
  if axis < 0 || axis >= ndim
    raise ArgumentError,"invalid axis"
  end
  axis
end

#coerce(other) ⇒ Array

Returns an array containing other and self, both are converted to upcasted type of NArray. Note that NArray has distinct UPCAST mechanism. Coerce is used for operation between non-NArray and NArray.

Parameters:

  • other (Object)

    numeric object.

Returns:

  • (Array)

    NArray-casted [other,self]



1141
1142
1143
1144
1145
1146
1147
1148
1149
# File 'ext/numo/narray/narray.c', line 1141

static VALUE
nary_coerce(VALUE x, VALUE y)
{
    VALUE type;

    type = numo_na_upcast(CLASS_OF(x), CLASS_OF(y));
    y = rb_funcall(type,rb_intern("cast"),1,y);
    return rb_assoc_new(y , x);
}

#column_major?Boolean

Return true if column major.

Returns:

  • (Boolean)


1570
1571
1572
1573
1574
1575
1576
# File 'ext/numo/narray/narray.c', line 1570

VALUE na_column_major_p( VALUE self )
{
    if (TEST_COLUMN_MAJOR(self))
	return Qtrue;
    else
	return Qfalse;
}

#concatenate(*arrays, axis: 0) ⇒ Object

Examples:

p a = Numo::DFloat[[1, 2], [3, 4]]
# Numo::DFloat#shape=[2,2]
# [[1, 2],
#  [3, 4]]

p b = Numo::DFloat[[5, 6]]
# Numo::DFloat#shape=[1,2]
# [[5, 6]]

p a.concatenate(b,axis:0)
# Numo::DFloat#shape=[3,2]
# [[1, 2],
#  [3, 4],
#  [5, 6]]

p a.concatenate(b.transpose, axis:1)
# Numo::DFloat#shape=[2,3]
# [[1, 2, 5],
#  [3, 4, 6]]


112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# File 'lib/numo/narray/extra.rb', line 112

def concatenate(*arrays,axis:0)
  axis = check_axis(axis)
  self_shape = shape
  self_shape.delete_at(axis)
  sum_size = shape[axis]
  arrays.map! do |a|
    case a
    when NArray
      # ok
    when Numeric
      a = self.class.new(1).store(a)
    when Array
      a = self.class.cast(a)
    else
      raise TypeError,"not Numo::NArray"
    end
    if a.ndim > ndim
      raise ShapeError,"dimension mismatch"
    end
    a_shape = a.shape
    sum_size += a_shape.delete_at(axis-ndim) || 1
    if self_shape != a_shape
      raise ShapeError,"shape mismatch"
    end
    a
  end
  self_shape.insert(axis,sum_size)
  result = self.class.zeros(*self_shape)
  lst = shape[axis]
  refs = [true] * ndim
  refs[axis] = 0...lst
  result[*refs] = self
  arrays.each do |a|
    fst = lst
    lst = fst + (a.shape[axis-ndim] || 1)
    refs[axis] = fst...lst
    result[*refs] = a
  end
  result
end

#contiguous?Boolean

Returns:

  • (Boolean)


868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
# File 'ext/numo/narray/narray.c', line 868

VALUE
na_check_contiguous(VALUE self)
{
    ssize_t elmsz;
    narray_t *na;
    GetNArray(self,na);

    switch(na->type) {
    case NARRAY_DATA_T:
    case NARRAY_FILEMAP_T:
        return Qtrue;
    case NARRAY_VIEW_T:
        if (NA_VIEW_STRIDX(na)==0) {
            return Qtrue;
        }
        if (na_check_ladder(self,0)==Qtrue) {
            elmsz = na_get_elmsz(self);
            if (elmsz == NA_STRIDE_AT(na,NA_NDIM(na)-1)) {
                return Qtrue;
            }
        }
    }
    return Qfalse;
}

#debug_infoObject



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# File 'ext/numo/narray/narray.c', line 108

VALUE
rb_narray_debug_info(VALUE self)
{
    int i;
    narray_t *na;
    GetNArray(self,na);

    printf("%s:\n",rb_class2name(CLASS_OF(self)));
    printf("  id     = 0x%"PRI_VALUE_PREFIX"x\n", self);
    printf("  type   = %d\n", na->type);
    printf("  flag   = [%d,%d]\n", na->flag[0], na->flag[1]);
    printf("  size   = %"SZF"d\n", na->size);
    printf("  ndim   = %d\n", na->ndim);
    printf("  shape  = 0x%"SZF"x\n", (size_t)na->shape);
    if (na->shape) {
        printf("  shape  = [");
        for (i=0;i<na->ndim;i++)
            printf(" %"SZF"d", na->shape[i]);
        printf(" ]\n");
    }

    switch(na->type) {
    case NARRAY_DATA_T:
    case NARRAY_FILEMAP_T:
        rb_narray_debug_info_nadata(self);
        break;
    case NARRAY_VIEW_T:
        rb_narray_debug_info_naview(self);
        break;
    }
    return Qnil;
}

#diagonal([offset,axes]) ⇒ Numo::NArray

Returns a diagonal view of NArray

Examples:

a = Numo::DFloat.new(4,5).seq
=> Numo::DFloat#shape=[4,5]
[[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14],
 [15, 16, 17, 18, 19]]
b = a.diagonal(1)
=> Numo::DFloat(view)#shape=[4]
[1, 7, 13, 19]
b.store(0)
a
=> Numo::DFloat#shape=[4,5]
[[0, 0, 2, 3, 4],
 [5, 6, 0, 8, 9],
 [10, 11, 12, 0, 14],
 [15, 16, 17, 18, 0]]
b.store([1,2,3,4])
a
=> Numo::DFloat#shape=[4,5]
[[0, 1, 2, 3, 4],
 [5, 6, 2, 8, 9],
 [10, 11, 12, 3, 14],
 [15, 16, 17, 18, 4]]

Parameters:

  • offset (Integer)

    Diagonal offset from the main diagonal. The default is 0. k>0 for diagonals above the main diagonal, and k<0 for diagonals below the main diagonal.

  • axes (Array)

    Array of axes to be used as the 2-d sub-arrays from which the diagonals should be taken. Defaults to last-two axes ([-2,-1]).

Returns:



556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
# File 'ext/numo/narray/data.c', line 556

VALUE
na_diagonal(int argc, VALUE *argv, VALUE self)
{
    int  i, k, nd;
    size_t  j;
    size_t *idx0, *idx1, *diag_idx;
    size_t *shape;
    size_t  diag_size;
    ssize_t stride, stride0, stride1;
    narray_t *na;
    narray_view_t *na1, *na2;
    VALUE view;
    VALUE vofs=0, vaxes=0;
    ssize_t kofs;
    size_t k0, k1;
    int ax[2];

    // check arguments
    if (argc>2) {
        rb_raise(rb_eArgError,"too many arguments (%d for 0..2)",argc);
    }

    for (i=0; i<argc; i++) {
        switch(TYPE(argv[i])) {
        case T_FIXNUM:
            if (vofs) {
                rb_raise(rb_eArgError,"offset is given twice");
            }
            vofs = argv[i];
            break;
        case T_ARRAY:
            if (vaxes) {
                rb_raise(rb_eArgError,"axes-array is given twice");
            }
            vaxes = argv[i];
            break;
        }
    }

    if (vofs) {
        kofs = NUM2SSIZET(vofs);
    } else {
        kofs = 0;
    }

    GetNArray(self,na);
    nd = na->ndim;
    if (nd < 2) {
        rb_raise(nary_eDimensionError,"less than 2-d array");
    }

    if (vaxes) {
        if (RARRAY_LEN(vaxes) != 2) {
            rb_raise(rb_eArgError,"axes must be 2-element array");
        }
        ax[0] = NUM2INT(RARRAY_AREF(vaxes,0));
        ax[1] = NUM2INT(RARRAY_AREF(vaxes,1));
        if (ax[0]<-nd || ax[0]>=nd || ax[1]<-nd || ax[1]>=nd) {
            rb_raise(rb_eArgError,"axis out of range:[%d,%d]",ax[0],ax[1]);
        }
        if (ax[0]<0) {ax[0] += nd;}
        if (ax[1]<0) {ax[1] += nd;}
        if (ax[0]==ax[1]) {
            rb_raise(rb_eArgError,"same axes:[%d,%d]",ax[0],ax[1]);
        }
    } else {
        ax[0] = nd-2;
        ax[1] = nd-1;
    }

    // Diagonal offset from the main diagonal.
    if (kofs >= 0) {
        k0 = 0;
        k1 = kofs;
        if (k1 >= na->shape[ax[1]]) {
            rb_raise(rb_eArgError,"invalid diagonal offset(%"SZF"d) for "
                     "last dimension size(%"SZF"d)",kofs,na->shape[ax[1]]);
        }
    } else {
        k0 = -kofs;
        k1 = 0;
        if (k0 >= na->shape[ax[0]]) {
            rb_raise(rb_eArgError,"invalid diagonal offset(=%"SZF"d) for "
                     "last-1 dimension size(%"SZF"d)",kofs,na->shape[ax[0]]);
        }
    }

    diag_size = MIN(na->shape[ax[0]]-k0,na->shape[ax[1]]-k1);

    // new shape
    shape = ALLOCA_N(size_t,nd-1);
    for (i=k=0; i<nd; i++) {
        if (i != ax[0] && i != ax[1]) {
            shape[k++] = na->shape[i];
        }
    }
    shape[k] = diag_size;

    // new object
    view = na_s_allocate_view(CLASS_OF(self));
    na_copy_flags(self, view);
    GetNArrayView(view, na2);

    // new stride
    na_setup_shape((narray_t*)na2, nd-1, shape);
    na2->stridx = ALLOC_N(stridx_t, nd-1);

    switch(na->type) {
    case NARRAY_DATA_T:
    case NARRAY_FILEMAP_T:
        na2->offset = 0;
        na2->data = self;
        stride = stride0 = stride1 = na_get_elmsz(self);
        for (i=nd,k=nd-2; i--; ) {
            if (i==ax[1]) {
                stride1 = stride;
                if (kofs > 0) {
                    na2->offset = kofs*stride;
                }
            } else if (i==ax[0]) {
                stride0 = stride;
                if (kofs < 0) {
                    na2->offset = (-kofs)*stride;
                }
            } else {
                SDX_SET_STRIDE(na2->stridx[--k],stride);
            }
            stride *= na->shape[i];
        }
        SDX_SET_STRIDE(na2->stridx[nd-2],stride0+stride1);
        break;

    case NARRAY_VIEW_T:
        GetNArrayView(self, na1);
        na2->data = na1->data;
        na2->offset = na1->offset;
        for (i=k=0; i<nd; i++) {
            if (i != ax[0] && i != ax[1]) {
                if (SDX_IS_INDEX(na1->stridx[i])) {
                    idx0 = SDX_GET_INDEX(na1->stridx[i]);
                    idx1 = ALLOC_N(size_t, na->shape[i]);
                    for (j=0; j<na->shape[i]; j++) {
                        idx1[j] = idx0[j];
                    }
                    SDX_SET_INDEX(na2->stridx[k],idx1);
                } else {
                    na2->stridx[k] = na1->stridx[i];
                }
                k++;
            }
        }
        if (SDX_IS_INDEX(na1->stridx[ax[0]])) {
            idx0 = SDX_GET_INDEX(na1->stridx[ax[0]]);
            diag_idx = ALLOC_N(size_t, diag_size);
            if (SDX_IS_INDEX(na1->stridx[ax[1]])) {
                idx1 = SDX_GET_INDEX(na1->stridx[ax[1]]);
                for (j=0; j<diag_size; j++) {
                    diag_idx[j] = idx0[j+k0] + idx1[j+k1];
                }
            } else {
                stride1 = SDX_GET_STRIDE(na1->stridx[ax[1]]);
                for (j=0; j<diag_size; j++) {
                    diag_idx[j] = idx0[j+k0] + stride1*(j+k1);
                }
            }
            SDX_SET_INDEX(na2->stridx[nd-2],diag_idx);
        } else {
            stride0 = SDX_GET_STRIDE(na1->stridx[ax[0]]);
            if (SDX_IS_INDEX(na1->stridx[ax[1]])) {
                idx1 = SDX_GET_INDEX(na1->stridx[ax[1]]);
                diag_idx = ALLOC_N(size_t, diag_size);
                for (j=0; j<diag_size; j++) {
                    diag_idx[j] = stride0*(j+k0) + idx1[j+k1];
                }
                SDX_SET_INDEX(na2->stridx[nd-2],diag_idx);
            } else {
                stride1 = SDX_GET_STRIDE(na1->stridx[ax[1]]);
                na2->offset += stride0*k0 + stride1*k1;
                SDX_SET_STRIDE(na2->stridx[nd-2],stride0+stride1);
            }
        }
        break;
    }
    return view;
}

#dot(other) ⇒ Object

Returns dot product.



858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
# File 'ext/numo/narray/data.c', line 858

static VALUE
numo_na_dot(VALUE self, VALUE other)
{
    VALUE test, sym_mulsum;
    volatile VALUE a1=self, a2=other;
    ID id_mulsum;
    narray_t *na1, *na2;

    id_mulsum = rb_intern("mulsum");
    sym_mulsum = ID2SYM(id_mulsum);
    test = rb_funcall(a1, rb_intern("respond_to?"), 1, sym_mulsum);
    if (!RTEST(test)) {
        rb_raise(rb_eNoMethodError,"requires mulsum method for dot method");
    }
    GetNArray(a1,na1);
    GetNArray(a2,na2);
    if (na2->ndim > 1) {
        // insert new axis [ ..., last-1-dim, newaxis*other.ndim, last-dim ]
        a1 = na_new_dimension_for_dot(a1, na1->ndim-1, na2->ndim-1, 0);
        // insert & transpose [ newaxis*self.ndim, ..., last-dim, last-1-dim ]
        a2 = na_new_dimension_for_dot(a2, 0, na1->ndim-1, 1);
    }
    return rb_funcall(a1,rb_intern("mulsum"),2,a2,INT2FIX(-1));
}

#dsplit(indices_or_sections) ⇒ Object



252
253
254
# File 'lib/numo/narray/extra.rb', line 252

def dsplit(indices_or_sections)
  split(indices_or_sections, axis:2)
end

#empty?Boolean

Returns true if self.size == 0.

Returns:

  • (Boolean)


715
716
717
718
719
720
721
722
723
724
# File 'ext/numo/narray/narray.c', line 715

static VALUE
na_empty_p(VALUE self)
{
    narray_t *na;
    GetNArray(self,na);
    if (NA_SIZE(na)==0) {
        return Qtrue;
    }
    return Qfalse;
}

#expand_dims(dim) ⇒ Numo::NArray

Expand the shape of an array. Insert a new axis with size=1 at a given dimension.

Parameters:

  • dim (Integer)

    dimension at which new axis is inserted.

Returns:



968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
# File 'ext/numo/narray/narray.c', line 968

VALUE
na_expand_dims(VALUE self, VALUE vdim)
{
    int  i, j, nd, dim;
    size_t *shape, *na_shape;
    stridx_t *stridx, *na_stridx;
    narray_t *na;
    narray_view_t *na2;
    VALUE view;

    GetNArray(self,na);
    nd = na->ndim;

    dim = NUM2INT(vdim);
    if (dim < -nd-1 || dim > nd) {
        rb_raise(nary_eDimensionError,"invalid axis (%d for %dD NArray)",
                 dim,nd);
    }
    if (dim < 0) {
        dim += nd+1;
    }

    view = na_make_view(self);
    GetNArrayView(view, na2);

    shape = ALLOC_N(size_t,nd+1);
    stridx = ALLOC_N(stridx_t,nd+1);
    na_shape = na2->base.shape;
    na_stridx = na2->stridx;

    for (i=j=0; i<=nd; i++) {
        if (i==dim) {
            shape[i] = 1;
            SDX_SET_STRIDE(stridx[i],0);
        } else {
            shape[i] = na_shape[j];
            stridx[i] = na_stridx[j];
            j++;
        }
    }

    na2->stridx = stridx;
    xfree(na_stridx);
    na2->base.shape = shape;
    if (na_shape != &(na2->base.size)) {
        xfree(na_shape);
    }
    na2->base.ndim++;
    return view;
}

#flattenObject



432
433
434
435
436
# File 'ext/numo/narray/data.c', line 432

VALUE
na_flatten(VALUE self)
{
    return na_flatten_dim(self,0);
}

#host_order?Boolean Also known as: little_endian?, vacs_order?

Return true if not byte swapped.

Returns:

  • (Boolean)


1603
1604
1605
1606
1607
1608
# File 'ext/numo/narray/narray.c', line 1603

VALUE na_host_order_p( VALUE self )
{
    if (TEST_BYTE_SWAPPED(self))
      return Qfalse;
    return Qtrue;
}

#hsplit(indices_or_sections) ⇒ Object



248
249
250
# File 'lib/numo/narray/extra.rb', line 248

def hsplit(indices_or_sections)
  split(indices_or_sections, axis:1)
end

#initialize_copy(other) ⇒ Numo::NArray

Replaces the contents of self with the contents of other narray. Used in dup and clone method.

Parameters:

Returns:



373
374
375
376
377
378
379
380
381
382
383
# File 'ext/numo/narray/narray.c', line 373

static VALUE
na_initialize_copy(VALUE self, VALUE orig)
{
    narray_t *na;
    GetNArray(orig,na);

    na_setup(self,NA_NDIM(na),NA_SHAPE(na));
    na_store(self,orig);
    na_copy_flags(orig,self);
    return self;
}

#inplaceNumo::NArray

Returns view of narray with inplace flagged.

Returns:



1615
1616
1617
1618
1619
1620
1621
# File 'ext/numo/narray/narray.c', line 1615

VALUE na_inplace( VALUE self )
{
    VALUE view = self;
    view = na_make_view(self);
    SET_INPLACE(view);
    return view;
}

#inplace!Numo::NArray

Set inplace flag to self.

Returns:



1627
1628
1629
1630
1631
# File 'ext/numo/narray/narray.c', line 1627

VALUE na_inplace_bang( VALUE self )
{
    SET_INPLACE(self);
    return self;
}

#inplace?Boolean

Return true if inplace flagged.

Returns:

  • (Boolean)


1644
1645
1646
1647
1648
1649
1650
# File 'ext/numo/narray/narray.c', line 1644

VALUE na_inplace_p( VALUE self )
{
    if (TEST_INPLACE(self))
        return Qtrue;
    else
        return Qfalse;
}

#marshal_dumpArray

Dump marshal data.

Returns:

  • (Array)

    Array containing marshal data.



1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
# File 'ext/numo/narray/narray.c', line 1335

static VALUE
nary_marshal_dump(VALUE self)
{
    VALUE a;

    a = rb_ary_new();
    rb_ary_push(a, INT2FIX(1));     // version
    rb_ary_push(a, na_shape(self));
    rb_ary_push(a, INT2FIX(NA_FLAG0(self)));
    if (CLASS_OF(self) == numo_cRObject) {
        narray_t *na;
        VALUE *ptr;
        size_t offset=0;
        GetNArray(self,na);
        if (na->type == NARRAY_VIEW_T) {
            if (na_check_contiguous(self)==Qtrue) {
                offset = NA_VIEW_OFFSET(na);
            } else {
                self = rb_funcall(self,rb_intern("copy"),0);
            }
        }
        ptr = (VALUE*)na_get_pointer_for_read(self);
        rb_ary_push(a, rb_ary_new4(NA_SIZE(na), ptr+offset));
    } else {
        rb_ary_push(a, nary_to_binary(self));
    }
    RB_GC_GUARD(self);
    return a;
}

#marshal_load(data) ⇒ nil

Load marshal data.

Returns:

  • (nil)


1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
# File 'ext/numo/narray/narray.c', line 1372

static VALUE
nary_marshal_load(VALUE self, VALUE a)
{
    VALUE v;

    if (TYPE(a) != T_ARRAY) {
        rb_raise(rb_eArgError,"marshal argument should be array");
    }
    if (RARRAY_LEN(a) != 4) {
        rb_raise(rb_eArgError,"marshal array size should be 4");
    }
    if (RARRAY_AREF(a,0) != INT2FIX(1)) {
        rb_raise(rb_eArgError,"NArray marshal version %d is not supported "
                 "(only version 1)", NUM2INT(RARRAY_AREF(a,0)));
    }
    na_initialize(self,RARRAY_AREF(a,1));
    NA_FL0_SET(self,FIX2INT(RARRAY_AREF(a,2)));
    v = RARRAY_AREF(a,3);
    if (CLASS_OF(self) == numo_cRObject) {
        narray_t *na;
        char *ptr;
        if (TYPE(v) != T_ARRAY) {
            rb_raise(rb_eArgError,"RObject content should be array");
        }
        GetNArray(self,na);
        if (RARRAY_LEN(v) != (long)NA_SIZE(na)) {
            rb_raise(rb_eArgError,"RObject content size mismatch");
        }
        ptr = na_get_pointer_for_write(self);
        memcpy(ptr, RARRAY_PTR(v), NA_SIZE(na)*sizeof(VALUE));
    } else {
        nary_store_binary(1,&v,self);
        if (TEST_BYTE_SWAPPED(self)) {
            rb_funcall(na_inplace(self),rb_intern("to_host"),0);
            REVERSE_ENDIAN(self); // correct behavior??
        }
    }
    RB_GC_GUARD(a);
    return self;
}

#ndimObject Also known as: rank

method: size() – returns the total number of typeents



702
703
704
705
706
707
708
# File 'ext/numo/narray/narray.c', line 702

static VALUE
na_ndim(VALUE self)
{
    narray_t *na;
    GetNArray(self,na);
    return INT2NUM(na->ndim);
}

#out_of_place!Numo::NArray Also known as: not_inplace!

Unset inplace flag to self.

Returns:



1656
1657
1658
1659
1660
# File 'ext/numo/narray/narray.c', line 1656

VALUE na_out_of_place_bang( VALUE self )
{
    UNSET_INPLACE(self);
    return self;
}

#repeat(arg, axis: nil) ⇒ Object

Examples:

p Numo::NArray[3].repeat(4)
# Numo::Int32#shape=[4]
# [3, 3, 3, 3]

p x = Numo::NArray[[1,2],[3,4]]
# Numo::Int32#shape=[2,2]
# [[1, 2],
#  [3, 4]]

p x.repeat(2)
# Numo::Int32#shape=[8]
# [1, 1, 2, 2, 3, 3, 4, 4]

p x.repeat(3,axis:1)
# Numo::Int32#shape=[2,6]
# [[1, 1, 1, 2, 2, 2],
#  [3, 3, 3, 4, 4, 4]]

p x.repeat([1,2],axis:0)
# Numo::Int32#shape=[3,2]
# [[1, 2],
#  [3, 4],
#  [3, 4]]


364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# File 'lib/numo/narray/extra.rb', line 364

def repeat(arg,axis:nil)
  case axis
  when Integer
    axis = check_axis(axis)
    c = self
  when NilClass
    c = self.flatten
    axis = 0
  else
    raise ArgumentError,"invalid axis"
  end
  case arg
  when Integer
    if !arg.kind_of?(Integer) || arg<1
      raise ArgumentError,"argument should be positive integer"
    end
    idx = c.shape[axis].times.map{|i| [i]*arg}.flatten
  else
    arg = arg.to_a
    if arg.size != c.shape[axis]
      raise ArgumentError,"repeat size shoud be equal to size along axis"
    end
    arg.each do |i|
      if !i.kind_of?(Integer) || i<0
        raise ArgumentError,"argument should be non-negative integer"
      end
    end
    idx = arg.each_with_index.map{|a,i| [i]*a}.flatten
  end
  ref = [true] * c.ndim
  ref[axis] = idx
  c[*ref].copy
end

#reshape(*args) ⇒ Object

private function for reshape



266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# File 'ext/numo/narray/data.c', line 266

static VALUE
na_reshape(int argc, VALUE *argv, VALUE self)
{
    int    i, unfixed=-1;
    size_t total=1;
    size_t *shape; //, *shape_save;
    narray_t *na;
    VALUE    copy;

    if (argc == 0) {
        rb_raise(rb_eRuntimeError, "No argrument");
    }
    GetNArray(self,na);
    if (NA_SIZE(na) == 0) {
        rb_raise(rb_eRuntimeError, "cannot reshape empty array");
    }

    /* get shape from argument */
    shape = ALLOCA_N(size_t,argc);
    for (i=0; i<argc; ++i) {
        switch(TYPE(argv[i])) {
        case T_FIXNUM:
            total *= shape[i] = NUM2INT(argv[i]);
            break;
        case T_NIL:
        case T_TRUE:
            unfixed = i;
            break;
        default:
            rb_raise(rb_eArgError,"illegal type");
        }
    }

    if (unfixed>=0) {
        if (NA_SIZE(na) % total != 0)
            rb_raise(rb_eArgError, "Total size size must be divisor");
        shape[unfixed] = NA_SIZE(na) / total;
    }
    else if (total !=  NA_SIZE(na)) {
        rb_raise(rb_eArgError, "Total size must be same");
    }

    copy = rb_funcall(self,rb_intern("copy"),0);
    GetNArray(copy,na);
    //shape_save = NA_SHAPE(na);
    na_setup_shape(na,argc,shape);
    //if (NA_SHAPE(na) != shape_save) {
    //    xfree(shape_save);
    //}
    return copy;
}

#reverse([dim0,dim1,..]) ⇒ Object

Return reversed view along specified dimeinsion



1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
# File 'ext/numo/narray/narray.c', line 1027

VALUE
nary_reverse(int argc, VALUE *argv, VALUE self)
{
    int i, nd;
    size_t  j, n;
    size_t  offset;
    size_t *idx1, *idx2;
    ssize_t stride;
    ssize_t sign;
    narray_t *na;
    narray_view_t *na1, *na2;
    VALUE view;
    VALUE reduce;

    reduce = na_reduce_dimension(argc, argv, 1, &self);

    GetNArray(self,na);
    nd = na->ndim;

    view = na_s_allocate_view(CLASS_OF(self));

    na_copy_flags(self, view);
    GetNArrayView(view, na2);

    na_setup_shape((narray_t*)na2, nd, na->shape);
    na2->stridx = ALLOC_N(stridx_t,nd);

    switch(na->type) {
    case NARRAY_DATA_T:
    case NARRAY_FILEMAP_T:
        stride = na_get_elmsz(self);
        offset = 0;
        for (i=nd; i--;) {
            if (na_test_reduce(reduce,i)) {
                offset += (na->shape[i]-1)*stride;
                sign = -1;
            } else {
                sign = 1;
            }
            SDX_SET_STRIDE(na2->stridx[i],stride*sign);
            stride *= na->shape[i];
        }
        na2->offset = offset;
        na2->data = self;
        break;
    case NARRAY_VIEW_T:
        GetNArrayView(self, na1);
        offset = na1->offset;
        for (i=0; i<nd; i++) {
            n = na1->base.shape[i];
            if (SDX_IS_INDEX(na1->stridx[i])) {
                idx1 = SDX_GET_INDEX(na1->stridx[i]);
                idx2 = ALLOC_N(size_t,n);
                if (na_test_reduce(reduce,i)) {
                    for (j=0; j<n; j++) {
                        idx2[n-1-j] = idx1[j];
                    }
                } else {
                    for (j=0; j<n; j++) {
                        idx2[j] = idx1[j];
                    }
                }
                SDX_SET_INDEX(na2->stridx[i],idx2);
            } else {
                stride = SDX_GET_STRIDE(na1->stridx[i]);
                if (na_test_reduce(reduce,i)) {
                    offset += (n-1)*stride;
                    SDX_SET_STRIDE(na2->stridx[i],-stride);
                } else {
                    na2->stridx[i] = na1->stridx[i];
                }
            }
        }
        na2->offset = offset;
        na2->data = na1->data;
        break;
    }

    return view;
}

#row_major?Boolean

Return true if row major.

Returns:

  • (Boolean)


1581
1582
1583
1584
1585
1586
1587
# File 'ext/numo/narray/narray.c', line 1581

VALUE na_row_major_p( VALUE self )
{
    if (TEST_ROW_MAJOR(self))
	return Qtrue;
    else
	return Qfalse;
}

#shapeObject

method: shape() – returns shape, array of the size of dimensions



728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
# File 'ext/numo/narray/narray.c', line 728

static VALUE
 na_shape(VALUE self)
{
    volatile VALUE v;
    narray_t *na;
    size_t i, n, c, s;

    GetNArray(self,na);
    n = NA_NDIM(na);
    if (TEST_COLUMN_MAJOR(self)) {
        c = n-1;
        s = -1;
    } else {
        c = 0;
        s = 1;
    }
    v = rb_ary_new2(n);
    for (i=0; i<n; i++) {
        rb_ary_push(v, SIZET2NUM(na->shape[c]));
        c += s;
    }
    return v;
}

#sizeObject Also known as: length, total

method: size() – returns the total number of typeents



692
693
694
695
696
697
698
# File 'ext/numo/narray/narray.c', line 692

static VALUE
na_size(VALUE self)
{
    narray_t *na;
    GetNArray(self,na);
    return SIZET2NUM(na->size);
}

#split(indices_or_sections, axis: 0) ⇒ Object

Examples:

p x = Numo::DFloat.new(9).seq
# Numo::DFloat#shape=[9]
# [0, 1, 2, 3, 4, 5, 6, 7, 8]

pp x.split(3)
# [Numo::DFloat(view)#shape=[3]
# [0, 1, 2],
#  Numo::DFloat(view)#shape=[3]
# [3, 4, 5],
#  Numo::DFloat(view)#shape=[3]
# [6, 7, 8]]

p x = Numo::DFloat.new(8).seq
# Numo::DFloat#shape=[8]
# [0, 1, 2, 3, 4, 5, 6, 7]

pp x.split([3, 5, 6, 10])
# [Numo::DFloat(view)#shape=[3]
# [0, 1, 2],
#  Numo::DFloat(view)#shape=[2]
# [3, 4],
#  Numo::DFloat(view)#shape=[1]
# [5],
#  Numo::DFloat(view)#shape=[2]
# [6, 7],
#  Numo::DFloat(view)#shape=[0][]]


181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# File 'lib/numo/narray/extra.rb', line 181

def split(indices_or_sections, axis:0)
  axis = check_axis(axis)
  size_axis = shape[axis]
  case indices_or_sections
  when Integer
    div_axis, mod_axis = size_axis.divmod(indices_or_sections)
    if mod_axis != 0
      raise "not equally divide the axis"
    end
    refs = [true]*ndim
    indices_or_sections.times.map do |i|
      refs[axis] = i*div_axis ... (i+1)*div_axis
      self[*refs]
    end
  when NArray
    split(indices_or_sections.to_a,axis:axis)
  when Array
    refs = [true]*ndim
    fst = 0
    (indices_or_sections + [size_axis]).map do |lst|
      lst = size_axis if lst > size_axis
      refs[axis] = (fst < size_axis) ? fst...lst : -1...-1
      fst = lst
      self[*refs]
    end
  else
    raise TypeError,"argument must be Integer or Array"
  end
end

#store_binary(string, [offset]) ⇒ Integer

Returns a new 1-D array initialized from binary raw data in a string.

Parameters:

  • string (String)

    Binary raw data.

  • (optional) (Integer)

    offset Byte offset in string.

Returns:

  • (Integer)

    stored length.



1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
# File 'ext/numo/narray/narray.c', line 1262

static VALUE
nary_store_binary(int argc, VALUE *argv, VALUE self)
{
    size_t size, str_len, byte_size, offset;
    char *ptr;
    int   narg;
    VALUE vstr, voffset;
    VALUE velmsz;
    narray_t *na;

    narg = rb_scan_args(argc,argv,"11",&vstr,&voffset);
    str_len = RSTRING_LEN(vstr);
    if (narg==2) {
        offset = NUM2SIZET(voffset);
        if (str_len < offset) {
            rb_raise(rb_eArgError, "offset is larger than string length");
        }
        str_len -= offset;
    } else {
        offset = 0;
    }

    GetNArray(self,na);
    size = NA_SIZE(na);
    velmsz = rb_const_get(CLASS_OF(self), rb_intern(ELEMENT_BYTE_SIZE));
    if (FIXNUM_P(velmsz)) {
        byte_size = size * NUM2SIZET(velmsz);
    } else {
        byte_size = ceil(size * NUM2DBL(velmsz));
    }
    if (byte_size > str_len) {
        rb_raise(rb_eArgError, "string is too short to store");
    }

    ptr = na_get_pointer_for_write(self);
    memcpy(ptr, RSTRING_PTR(vstr)+offset, byte_size);

    return SIZET2NUM(byte_size);
}

#swap_byteObject Also known as: hton



104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# File 'ext/numo/narray/data.c', line 104

static VALUE
nary_swap_byte(VALUE self)
{
    VALUE v;
    ndfunc_arg_in_t ain[1] = {{Qnil,0}};
    ndfunc_arg_out_t aout[1] = {{INT2FIX(0),0}};
    ndfunc_t ndf = { iter_swap_byte, FULL_LOOP|NDF_ACCEPT_BYTESWAP,
                     1, 1, ain, aout };

    v = na_ndloop(&ndf, 1, self);
    if (self!=v) {
        na_copy_flags(self, v);
    }
    REVERSE_ENDIAN(v);
    return v;
}

#tile(*arg) ⇒ Object

Examples:

p a = Numo::NArray[0,1,2]
# Numo::Int32#shape=[3]
# [0, 1, 2]

p a.tile(2)
# Numo::Int32#shape=[6]
# [0, 1, 2, 0, 1, 2]

p a.tile(2,2)
# Numo::Int32#shape=[2,6]
# [[0, 1, 2, 0, 1, 2],
#  [0, 1, 2, 0, 1, 2]]

p a.tile(2,1,2)
# Numo::Int32#shape=[2,1,6]
# [[[0, 1, 2, 0, 1, 2]],
#  [[0, 1, 2, 0, 1, 2]]]

p b = Numo::NArray[[1, 2], [3, 4]]
# Numo::Int32#shape=[2,2]
# [[1, 2],
#  [3, 4]]

p b.tile(2)
# Numo::Int32#shape=[2,4]
# [[1, 2, 1, 2],
#  [3, 4, 3, 4]]

p b.tile(2,1)
# Numo::Int32#shape=[4,2]
# [[1, 2],
#  [3, 4],
#  [1, 2],
#  [3, 4]]

p c = Numo::NArray[1,2,3,4]
# Numo::Int32#shape=[4]
# [1, 2, 3, 4]

p c.tile(4,1)
# Numo::Int32#shape=[4,4]
# [[1, 2, 3, 4],
#  [1, 2, 3, 4],
#  [1, 2, 3, 4],
#  [1, 2, 3, 4]]


303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# File 'lib/numo/narray/extra.rb', line 303

def tile(*arg)
  arg.each do |i|
    if !i.kind_of?(Integer) || i<1
      raise ArgumentError,"argument should be positive integer"
    end
  end
  ns = arg.size
  nd = self.ndim
  shp = self.shape
  new_shp = []
  src_shp = []
  res_shp = []
  (nd-ns).times do
    new_shp << 1
    new_shp << (n = shp.shift)
    src_shp << :new
    src_shp << true
    res_shp << n
  end
  (ns-nd).times do
    new_shp << (m = arg.shift)
    new_shp << 1
    src_shp << :new
    src_shp << :new
    res_shp << m
  end
  [nd,ns].min.times do
    new_shp << (m = arg.shift)
    new_shp << (n = shp.shift)
    src_shp << :new
    src_shp << true
    res_shp << n*m
  end
  self.class.new(*new_shp).store(self[*src_shp]).reshape(*res_shp)
end

#to_binaryString Also known as: to_string

Returns string containing the raw data bytes in NArray.

Returns:

  • (String)

    String object containing binary raw data.



1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
# File 'ext/numo/narray/narray.c', line 1307

static VALUE
nary_to_binary(VALUE self)
{
    size_t len, offset=0;
    char *ptr;
    VALUE str;
    narray_t *na;

    GetNArray(self,na);
    if (na->type == NARRAY_VIEW_T) {
        if (na_check_contiguous(self)==Qtrue) {
            offset = NA_VIEW_OFFSET(na);
        } else {
            self = rb_funcall(self,rb_intern("copy"),0);
        }
    }
    len = NUM2SIZET(nary_byte_size(self));
    ptr = na_get_pointer_for_read(self);
    str = rb_usascii_str_new(ptr+offset,len);
    RB_GC_GUARD(self);
    return str;
}

#to_hostObject



140
141
142
143
144
145
146
147
# File 'ext/numo/narray/data.c', line 140

static VALUE
nary_to_host(VALUE self)
{
    if (TEST_HOST_ORDER(self)) {
        return self;
    }
    return rb_funcall(self, rb_intern("swap_byte"), 0);
}

#to_networkObject



122
123
124
125
126
127
128
129
# File 'ext/numo/narray/data.c', line 122

static VALUE
nary_to_network(VALUE self)
{
    if (TEST_BIG_ENDIAN(self)) {
        return self;
    }
    return rb_funcall(self, rb_intern("swap_byte"), 0);
}

#to_swappedObject



149
150
151
152
153
154
155
156
# File 'ext/numo/narray/data.c', line 149

static VALUE
nary_to_swapped(VALUE self)
{
    if (TEST_BYTE_SWAPPED(self)) {
        return self;
    }
    return rb_funcall(self, rb_intern("swap_byte"), 0);
}

#to_vacsObject



131
132
133
134
135
136
137
138
# File 'ext/numo/narray/data.c', line 131

static VALUE
nary_to_vacs(VALUE self)
{
    if (TEST_LITTLE_ENDIAN(self)) {
        return self;
    }
    return rb_funcall(self, rb_intern("swap_byte"), 0);
}

#transpose(*args) ⇒ Object



192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# File 'ext/numo/narray/data.c', line 192

VALUE
na_transpose(int argc, VALUE *argv, VALUE self)
{
    int ndim, *map, *permute;
    int i, d;
    bool is_positive, is_negative;
    narray_t *na1;

    GetNArray(self,na1);
    ndim = na1->ndim;
    if (ndim < 2) {
        if (argc > 0) {
            rb_raise(rb_eArgError, "unnecessary argument for 1-d array");
        }
        return na_make_view(self);
    }
    map = ALLOCA_N(int,ndim);
    if (argc == 0) {
        for (i=0; i < ndim; i++) {
            map[i] = ndim-1-i;
        }
        return na_transpose_map(self,map);
    }
    // with argument
    if (argc > ndim) {
        rb_raise(rb_eArgError, "more arguments than ndim");
    }
    for (i=0; i < ndim; i++) {
        map[i] = i;
    }
    permute = ALLOCA_N(int,argc);
    for (i=0; i < argc; i++) {
        permute[i] = 0;
    }
    is_positive = is_negative = 0;
    for (i=0; i < argc; i++) {
	if (TYPE(argv[i]) != T_FIXNUM) {
            rb_raise(rb_eArgError, "invalid argument");
        }
        d = FIX2INT(argv[i]);
        if (d >= 0) {
            if (d >= argc) {
                rb_raise(rb_eArgError, "out of dimension range");
            }
            if (is_negative) {
                rb_raise(rb_eArgError, "dimension must be non-negative only or negative only");
            }
            if (permute[d]) {
                rb_raise(rb_eArgError, "not permutation");
            }
            map[i] = d;
            permute[d] = 1;
            is_positive = 1;
        } else {
            if (d < -argc) {
                rb_raise(rb_eArgError, "out of dimension range");
            }
            if (is_positive) {
                rb_raise(rb_eArgError, "dimension must be non-negative only or negative only");
            }
            if (permute[argc+d]) {
                rb_raise(rb_eArgError, "not permutation");
            }
            map[ndim-argc+i] = ndim+d;
            permute[argc+d] = 1;
            is_negative = 1;
        }
    }
    return na_transpose_map(self,map);
}

#viewObject

Return view of NArray



901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
# File 'ext/numo/narray/narray.c', line 901

VALUE
na_make_view(VALUE self)
{
    int i, nd;
    size_t  j;
    size_t *idx1, *idx2;
    ssize_t stride;
    narray_t *na;
    narray_view_t *na1, *na2;
    volatile VALUE view;

    GetNArray(self,na);
    nd = na->ndim;

    view = na_s_allocate_view(CLASS_OF(self));

    na_copy_flags(self, view);
    GetNArrayView(view, na2);

    na_setup_shape((narray_t*)na2, nd, na->shape);
    na2->stridx = ALLOC_N(stridx_t,nd);

    switch(na->type) {
    case NARRAY_DATA_T:
    case NARRAY_FILEMAP_T:
        stride = na_get_elmsz(self);
        for (i=nd; i--;) {
            SDX_SET_STRIDE(na2->stridx[i],stride);
            stride *= na->shape[i];
        }
        na2->offset = 0;
        na2->data = self;
        break;
    case NARRAY_VIEW_T:
        GetNArrayView(self, na1);
        for (i=0; i<nd; i++) {
            if (SDX_IS_INDEX(na1->stridx[i])) {
                idx1 = SDX_GET_INDEX(na1->stridx[i]);
                idx2 = ALLOC_N(size_t,na1->base.shape[i]);
                for (j=0; j<na1->base.shape[i]; j++) {
                    idx2[j] = idx1[j];
                }
                SDX_SET_INDEX(na2->stridx[i],idx2);
            } else {
                na2->stridx[i] = na1->stridx[i];
            }
        }
        na2->offset = na1->offset;
        na2->data = na1->data;
        break;
    }

    return view;
}

#vsplit(indices_or_sections) ⇒ Object

Examples:

p x = Numo::DFloat.new(4,4).seq
# Numo::DFloat#shape=[4,4]
# [[0, 1, 2, 3],
#  [4, 5, 6, 7],
#  [8, 9, 10, 11],
#  [12, 13, 14, 15]]

pp x.hsplit(2)
# [Numo::DFloat(view)#shape=[4,2]
# [[0, 1],
#  [4, 5],
#  [8, 9],
#  [12, 13]],
#  Numo::DFloat(view)#shape=[4,2]
# [[2, 3],
#  [6, 7],
#  [10, 11],
#  [14, 15]]]

pp x.hsplit([3, 6])
# [Numo::DFloat(view)#shape=[4,3]
# [[0, 1, 2],
#  [4, 5, 6],
#  [8, 9, 10],
#  [12, 13, 14]],
#  Numo::DFloat(view)#shape=[4,1]
# [[3],
#  [7],
#  [11],
#  [15]],
#  Numo::DFloat(view)#shape=[4,0][]]


244
245
246
# File 'lib/numo/narray/extra.rb', line 244

def vsplit(indices_or_sections)
  split(indices_or_sections, axis:0)
end