Module: Numo::Linalg::Lapack
- Defined in:
- ext/numo/linalg/lapack/lapack.c,
ext/numo/linalg/lapack/lapack_c.c,
ext/numo/linalg/lapack/lapack_d.c,
ext/numo/linalg/lapack/lapack_s.c,
ext/numo/linalg/lapack/lapack_z.c,
lib/numo/linalg/function.rb
Constant Summary
- FIXNAME =
{ corgqr: :cungqr, zorgqr: :zungqr, }
Class Method Summary collapse
-
.call(func, *args) ⇒ Object
Call LAPACK function prefixed with BLAS char ([sdcz]) defined from data-types of arguments.
-
.cgeev(a, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [w, vl, vr, info]
CGEEV computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
-
.cgelqf(a, [order: 'R']) ⇒ [a, tau, info]
CGELQF computes an LQ factorization of a complex M-by-N matrix A: A = L * Q.
-
.cgels(a, b, trans: 'N', order: 'R') ⇒ [a, b, info]
CGELS solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose, using a QR or LQ factorization of A.
-
.cgelsd(a, b, rcond: -1, order: 'R') ⇒ [b, s, rank, info]
CGELSD computes the minimum-norm solution to a real linear least squares problem:.
-
.cgelss(a, b, rcond: -1, order: 'R') ⇒ [a, b, s, rank, info]
CGELSS computes the minimum norm solution to a complex linear least squares problem: Minimize 2-norm( b - A*x ). -
.cgelsy(a, b, jpvt, rcond: -1, order: 'R') ⇒ [a, b, jpvt, rank, info]
CGELSY computes the minimum-norm solution to a complex linear least squares problem:.
-
.cgeqlf(a, [order: 'R']) ⇒ [a, tau, info]
CGEQLF computes a QL factorization of a complex M-by-N matrix A: A = Q * L.
-
.cgeqp3(a, jpvt, [order: 'R']) ⇒ [a, jpvt, tau, info]
CGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
-
.cgeqrf(a, [order: 'R']) ⇒ [a, tau, info]
CGEQRF computes a QR factorization of a complex M-by-N matrix A: A = Q * R.
-
.cgerqf(a, [order: 'R']) ⇒ [a, tau, info]
CGERQF computes an RQ factorization of a complex M-by-N matrix A: A = R * Q.
-
.cgesdd(a, [jobz: 'A', order:'R']) ⇒ [sigma, u, vt, info]
CGESDD computes the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally computing the left and/or right singular vectors, by using divide-and-conquer method.
-
.cgesv(a, b, [order: 'R']) ⇒ [a, b, ipiv, info]
CGESV computes the solution to a complex system of linear equations.
-
.cgesvd(a, [jobu: 'A', jobvt:'A', order:'R']) ⇒ [sigma, u, vt, info]
CGESVD computes the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally computing the left and/or right singular vectors.
-
.cgetrf(a, [order: 'R']) ⇒ [a, ipiv, info]
CGETRF computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
-
.cgetri(a, ipiv, [order: 'R']) ⇒ [a, info]
CGETRI computes the inverse of a matrix using the LU factorization computed by CGETRF.
-
.cgetrs(a, ipiv, b, [trans: 'N', order:'R']) ⇒ [b, info]
CGETRS solves a system of linear equations.
-
.cggev(a, b, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [alpha, beta, vl, vr, info]
CGGEV computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
-
.cheev(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
CHEEV computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A.
-
.cheevd(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
CHEEVD computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A.
-
.chegv(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
CHEGV computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
-
.chegvd(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
CHEGVD computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
-
.chegvx(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R', range:'I', il: 1, il: 2]) ⇒ [a, b, w, z, ifail, info]
CHEGVX computes selected eigenvalues, and optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
-
.chesv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, ipiv, info]
CHESV computes the solution to a complex system of linear equations.
-
.chetrf(a, [uplo: 'U', order:'R']) ⇒ [a, ipiv, info]
CHETRF computes the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting method.
-
.chetri(a, ipiv, [uplo: 'U', order:'R']) ⇒ [a, info]
CHETRI computes the inverse of a complex Hermitian indefinite matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by CHETRF.
-
.chetrs(a, ipiv, b, [uplo: 'U', order:'R']) ⇒ [b, info]
CHETRS solves a system of linear equations A*X = B with a complex Hermitian matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by CHETRF.
-
.clange(a, norm, [order: 'R']) ⇒ Numo::SFloat
CLANGE returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex matrix A.
-
.cposv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, info]
CPOSV computes the solution to a complex system of linear equations.
-
.cpotrf(a, [uplo: 'U', order:'R']) ⇒ [a, info]
CPOTRF computes the Cholesky factorization of a complex Hermitian positive definite matrix A.
-
.cpotri(a, [uplo: 'U', order:'R']) ⇒ [a, info]
CPOTRI computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF.
-
.cpotrs(a, b, [uplo: 'U', order:'R']) ⇒ [b, info]
CPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF.
-
.csysv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, ipiv, info]
CSYSV computes the solution to a complex system of linear equations.
-
.csytrf(a, [uplo: 'U', order:'R']) ⇒ [a, ipiv, info]
CSYTRF computes the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting method.
-
.csytri(a, ipiv, [uplo: 'U', order:'R']) ⇒ [a, info]
CSYTRI computes the inverse of a complex symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSYTRF.
-
.csytrs(a, ipiv, b, [uplo: 'U', order:'R']) ⇒ [b, info]
CSYTRS solves a system of linear equations A*X = B with a complex symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSYTRF.
-
.ctzrzf(a, [order: 'R']) ⇒ [a, tau, info]
CTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A to upper triangular form by means of unitary transformations.
-
.cungqr(a, tau, order: 'R') ⇒ [a, info]
CUNGQR generates an M-by-N complex matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M.
-
.dgeev(a, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [wr, wi, vl, vr, info]
DGEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
-
.dgelqf(a, [order: 'R']) ⇒ [a, tau, info]
DGELQF computes an LQ factorization of a real M-by-N matrix A: A = L * Q.
-
.dgels(a, b, trans: 'N', order: 'R') ⇒ [a, b, info]
DGELS solves overdetermined or underdetermined real linear systems involving an M-by-N matrix A, or its transpose, using a QR or LQ factorization of A.
-
.dgelsd(a, b, rcond: -1, order: 'R') ⇒ [b, s, rank, info]
DGELSD computes the minimum-norm solution to a real linear least squares problem:.
-
.dgelss(a, b, rcond: -1, order: 'R') ⇒ [a, b, s, rank, info]
DGELSS computes the minimum norm solution to a real linear least squares problem: Minimize 2-norm( b - A*x ). -
.dgelsy(a, b, jpvt, rcond: -1, order: 'R') ⇒ [a, b, jpvt, rank, info]
DGELSY computes the minimum-norm solution to a real linear least squares problem:.
-
.dgeqlf(a, [order: 'R']) ⇒ [a, tau, info]
DGEQLF computes a QL factorization of a real M-by-N matrix A: A = Q * L.
-
.dgeqp3(a, jpvt, [order: 'R']) ⇒ [a, jpvt, tau, info]
DGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
-
.dgeqrf(a, [order: 'R']) ⇒ [a, tau, info]
DGEQRF computes a QR factorization of a real M-by-N matrix A: A = Q * R.
-
.dgerqf(a, [order: 'R']) ⇒ [a, tau, info]
DGERQF computes an RQ factorization of a real M-by-N matrix A: A = R * Q.
-
.dgesdd(a, [jobz: 'A', order:'R']) ⇒ [sigma, u, vt, info]
DGESDD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and right singular vectors.
-
.dgesv(a, b, [order: 'R']) ⇒ [a, b, ipiv, info]
DGESV computes the solution to a real system of linear equations.
-
.dgesvd(a, [jobu: 'A', jobvt:'A', order:'R']) ⇒ [sigma, u, vt, info]
DGESVD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
-
.dgetrf(a, [order: 'R']) ⇒ [a, ipiv, info]
DGETRF computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
-
.dgetri(a, ipiv, [order: 'R']) ⇒ [a, info]
DGETRI computes the inverse of a matrix using the LU factorization computed by DGETRF.
-
.dgetrs(a, ipiv, b, [trans: 'N', order:'R']) ⇒ [b, info]
DGETRS solves a system of linear equations.
-
.dggev(a, b, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [alphar, alphai, beta, vl, vr, info]
DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
-
.dlange(a, norm, [order: 'R']) ⇒ Numo::DFloat
DLANGE returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real matrix A.
-
.dlopen(*args) ⇒ Object
-
.dorgqr(a, tau, order: 'R') ⇒ [a, info]
DORGQR generates an M-by-N real matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M.
-
.dposv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, info]
DPOSV computes the solution to a real system of linear equations.
-
.dpotrf(a, [uplo: 'U', order:'R']) ⇒ [a, info]
DPOTRF computes the Cholesky factorization of a real symmetric positive definite matrix A.
-
.dpotri(a, [uplo: 'U', order:'R']) ⇒ [a, info]
DPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.
-
.dpotrs(a, b, [uplo: 'U', order:'R']) ⇒ [b, info]
DPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.
-
.dsyev(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
DSYEV computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.
-
.dsyevd(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
DSYEVD computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.
-
.dsygv(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
DSYGV computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
-
.dsygvd(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
DSYGVD computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
-
.dsygvx(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R', range:'I', il: 1, il: 2]) ⇒ [a, b, w, z, ifail, info]
DSYGVX computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
-
.dsysv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, ipiv, info]
DSYSV computes the solution to a real system of linear equations.
-
.dsytrf(a, [uplo: 'U', order:'R']) ⇒ [a, ipiv, info]
DSYTRF computes the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting method.
-
.dsytri(a, ipiv, [uplo: 'U', order:'R']) ⇒ [a, info]
DSYTRI computes the inverse of a real symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by DSYTRF.
-
.dsytrs(a, ipiv, b, [uplo: 'U', order:'R']) ⇒ [b, info]
DSYTRS solves a system of linear equations A*X = B with a real symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by DSYTRF.
-
.dtzrzf(a, [order: 'R']) ⇒ [a, tau, info]
DTZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A to upper triangular form by means of orthogonal transformations.
-
.prefix=(prefix) ⇒ Object
-
.sgeev(a, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [wr, wi, vl, vr, info]
SGEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
-
.sgelqf(a, [order: 'R']) ⇒ [a, tau, info]
SGELQF computes an LQ factorization of a real M-by-N matrix A: A = L * Q.
-
.sgels(a, b, trans: 'N', order: 'R') ⇒ [a, b, info]
SGELS solves overdetermined or underdetermined real linear systems involving an M-by-N matrix A, or its transpose, using a QR or LQ factorization of A.
-
.sgelsd(a, b, rcond: -1, order: 'R') ⇒ [b, s, rank, info]
SGELSD computes the minimum-norm solution to a real linear least squares problem:.
-
.sgelss(a, b, rcond: -1, order: 'R') ⇒ [a, b, s, rank, info]
SGELSS computes the minimum norm solution to a real linear least squares problem: Minimize 2-norm( b - A*x ). -
.sgelsy(a, b, jpvt, rcond: -1, order: 'R') ⇒ [a, b, jpvt, rank, info]
SGELSY computes the minimum-norm solution to a real linear least squares problem:.
-
.sgeqlf(a, [order: 'R']) ⇒ [a, tau, info]
SGEQLF computes a QL factorization of a real M-by-N matrix A: A = Q * L.
-
.sgeqp3(a, jpvt, [order: 'R']) ⇒ [a, jpvt, tau, info]
SGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
-
.sgeqrf(a, [order: 'R']) ⇒ [a, tau, info]
SGEQRF computes a QR factorization of a real M-by-N matrix A: A = Q * R.
-
.sgerqf(a, [order: 'R']) ⇒ [a, tau, info]
SGERQF computes an RQ factorization of a real M-by-N matrix A: A = R * Q.
-
.sgesdd(a, [jobz: 'A', order:'R']) ⇒ [sigma, u, vt, info]
SGESDD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and right singular vectors.
-
.sgesv(a, b, [order: 'R']) ⇒ [a, b, ipiv, info]
SGESV computes the solution to a real system of linear equations.
-
.sgesvd(a, [jobu: 'A', jobvt:'A', order:'R']) ⇒ [sigma, u, vt, info]
SGESVD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
-
.sgetrf(a, [order: 'R']) ⇒ [a, ipiv, info]
SGETRF computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
-
.sgetri(a, ipiv, [order: 'R']) ⇒ [a, info]
SGETRI computes the inverse of a matrix using the LU factorization computed by SGETRF.
-
.sgetrs(a, ipiv, b, [trans: 'N', order:'R']) ⇒ [b, info]
SGETRS solves a system of linear equations.
-
.sggev(a, b, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [alphar, alphai, beta, vl, vr, info]
SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
-
.slange(a, norm, [order: 'R']) ⇒ Numo::SFloat
SLANGE returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real matrix A.
-
.sorgqr(a, tau, order: 'R') ⇒ [a, info]
SORGQR generates an M-by-N real matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M.
-
.sposv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, info]
SPOSV computes the solution to a real system of linear equations.
-
.spotrf(a, [uplo: 'U', order:'R']) ⇒ [a, info]
SPOTRF computes the Cholesky factorization of a real symmetric positive definite matrix A.
-
.spotri(a, [uplo: 'U', order:'R']) ⇒ [a, info]
SPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF.
-
.spotrs(a, b, [uplo: 'U', order:'R']) ⇒ [b, info]
SPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF.
-
.ssyev(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
SSYEV computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.
-
.ssyevd(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
SSYEVD computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.
-
.ssygv(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
SSYGV computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
-
.ssygvd(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
SSYGVD computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
-
.ssygvx(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R', range:'I', il: 1, il: 2]) ⇒ [a, b, w, z, ifail, info]
SSYGVX computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
-
.ssysv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, ipiv, info]
SSYSV computes the solution to a real system of linear equations.
-
.ssytrf(a, [uplo: 'U', order:'R']) ⇒ [a, ipiv, info]
SSYTRF computes the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting method.
-
.ssytri(a, ipiv, [uplo: 'U', order:'R']) ⇒ [a, info]
SSYTRI computes the inverse of a real symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by SSYTRF.
-
.ssytrs(a, ipiv, b, [uplo: 'U', order:'R']) ⇒ [b, info]
SSYTRS solves a system of linear equations A*X = B with a real symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by SSYTRF.
-
.stzrzf(a, [order: 'R']) ⇒ [a, tau, info]
STZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A to upper triangular form by means of orthogonal transformations.
-
.zgeev(a, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [w, vl, vr, info]
ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
-
.zgelqf(a, [order: 'R']) ⇒ [a, tau, info]
ZGELQF computes an LQ factorization of a complex M-by-N matrix A: A = L * Q.
-
.zgels(a, b, trans: 'N', order: 'R') ⇒ [a, b, info]
ZGELS solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose, using a QR or LQ factorization of A.
-
.zgelsd(a, b, rcond: -1, order: 'R') ⇒ [b, s, rank, info]
ZGELSD computes the minimum-norm solution to a real linear least squares problem:.
-
.zgelss(a, b, rcond: -1, order: 'R') ⇒ [a, b, s, rank, info]
ZGELSS computes the minimum norm solution to a complex linear least squares problem: Minimize 2-norm( b - A*x ). -
.zgelsy(a, b, jpvt, rcond: -1, order: 'R') ⇒ [a, b, jpvt, rank, info]
ZGELSY computes the minimum-norm solution to a complex linear least squares problem:.
-
.zgeqlf(a, [order: 'R']) ⇒ [a, tau, info]
ZGEQLF computes a QL factorization of a complex M-by-N matrix A: A = Q * L.
-
.zgeqp3(a, jpvt, [order: 'R']) ⇒ [a, jpvt, tau, info]
ZGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
-
.zgeqrf(a, [order: 'R']) ⇒ [a, tau, info]
ZGEQRF computes a QR factorization of a complex M-by-N matrix A: A = Q * R.
-
.zgerqf(a, [order: 'R']) ⇒ [a, tau, info]
ZGERQF computes an RQ factorization of a complex M-by-N matrix A: A = R * Q.
-
.zgesdd(a, [jobz: 'A', order:'R']) ⇒ [sigma, u, vt, info]
ZGESDD computes the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally computing the left and/or right singular vectors, by using divide-and-conquer method.
-
.zgesv(a, b, [order: 'R']) ⇒ [a, b, ipiv, info]
ZGESV computes the solution to a complex system of linear equations.
-
.zgesvd(a, [jobu: 'A', jobvt:'A', order:'R']) ⇒ [sigma, u, vt, info]
ZGESVD computes the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally computing the left and/or right singular vectors.
-
.zgetrf(a, [order: 'R']) ⇒ [a, ipiv, info]
ZGETRF computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
-
.zgetri(a, ipiv, [order: 'R']) ⇒ [a, info]
ZGETRI computes the inverse of a matrix using the LU factorization computed by ZGETRF.
-
.zgetrs(a, ipiv, b, [trans: 'N', order:'R']) ⇒ [b, info]
ZGETRS solves a system of linear equations.
-
.zggev(a, b, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [alpha, beta, vl, vr, info]
ZGGEV computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
-
.zheev(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
ZHEEV computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A.
-
.zheevd(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A.
-
.zhegv(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
ZHEGV computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
-
.zhegvd(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
-
.zhegvx(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R', range:'I', il: 1, il: 2]) ⇒ [a, b, w, z, ifail, info]
ZHEGVX computes selected eigenvalues, and optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
-
.zhesv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, ipiv, info]
ZHESV computes the solution to a complex system of linear equations.
-
.zhetrf(a, [uplo: 'U', order:'R']) ⇒ [a, ipiv, info]
ZHETRF computes the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting method.
-
.zhetri(a, ipiv, [uplo: 'U', order:'R']) ⇒ [a, info]
ZHETRI computes the inverse of a complex Hermitian indefinite matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHETRF.
-
.zhetrs(a, ipiv, b, [uplo: 'U', order:'R']) ⇒ [b, info]
ZHETRS solves a system of linear equations A*X = B with a complex Hermitian matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHETRF.
-
.zlange(a, norm, [order: 'R']) ⇒ Numo::DFloat
ZLANGE returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex matrix A.
-
.zposv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, info]
ZPOSV computes the solution to a complex system of linear equations.
-
.zpotrf(a, [uplo: 'U', order:'R']) ⇒ [a, info]
ZPOTRF computes the Cholesky factorization of a complex Hermitian positive definite matrix A.
-
.zpotri(a, [uplo: 'U', order:'R']) ⇒ [a, info]
ZPOTRI computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF.
-
.zpotrs(a, b, [uplo: 'U', order:'R']) ⇒ [b, info]
ZPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H * U or A = L * L**H computed by ZPOTRF.
-
.zsysv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, ipiv, info]
ZSYSV computes the solution to a complex system of linear equations.
-
.zsytrf(a, [uplo: 'U', order:'R']) ⇒ [a, ipiv, info]
ZSYTRF computes the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting method.
-
.zsytri(a, ipiv, [uplo: 'U', order:'R']) ⇒ [a, info]
ZSYTRI computes the inverse of a complex symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSYTRF.
-
.zsytrs(a, ipiv, b, [uplo: 'U', order:'R']) ⇒ [b, info]
ZSYTRS solves a system of linear equations A*X = B with a complex symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSYTRF.
-
.ztzrzf(a, [order: 'R']) ⇒ [a, tau, info]
ZTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A to upper triangular form by means of unitary transformations.
-
.zungqr(a, tau, order: 'R') ⇒ [a, info]
ZUNGQR generates an M-by-N complex matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M.
Class Method Details
.call(func, *args) ⇒ Object
Call LAPACK function prefixed with BLAS char ([sdcz]) defined from data-types of arguments.
39 40 41 42 43 |
# File 'lib/numo/linalg/function.rb', line 39 def self.call(func,*args) fn = (Linalg.blas_char(*args) + func.to_s).to_sym fn = FIXNAME[fn] || fn send(fn,*args) end |
.cgeev(a, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [w, vl, vr, info]
CGEEV computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j). The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 2364
static VALUE
lapack_s_cgeev(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n;
narray_t *na1;
/**/
size_t shape[2];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[5-CZ] = {{cT,1,shape},{cT,2,shape},{cT,2,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgeev, NO_LOOP|NDF_EXTRACT, 1, 5-CZ, ain, aout};
args_t g = {0,0,0};
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobvl,id_jobvr};
CHECK_FUNC(func_p,"cgeev");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobvl = option_job(opts[1],'V','N');
g.jobvr = option_job(opts[2],'V','N');
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
if (m != n) {
rb_raise(nary_eShapeError,"matrix must be square");
}
shape[0] = shape[1] = n;
if (g.jobvl=='N') { aout[2-CZ].dim = 0; }
if (g.jobvr=='N') { aout[3-CZ].dim = 0; }
ans = na_ndloop3(&ndf, &g, 1, a);
if (aout[3-CZ].dim == 0) { RARRAY_ASET(ans,3-CZ,Qnil); }
if (aout[2-CZ].dim == 0) { RARRAY_ASET(ans,2-CZ,Qnil); }
return ans;
}
|
.cgelqf(a, [order: 'R']) ⇒ [a, tau, info]
CGELQF computes an LQ factorization of a complex M-by-N matrix A: A = L * Q.
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 3888
static VALUE
lapack_s_cgelqf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgelqf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"cgelqf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.cgels(a, b, trans: 'N', order: 'R') ⇒ [a, b, info]
CGELS solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose, using a QR or LQ factorization of A. It is assumed that A has full rank. The following options are provided:
-
If TRANS = ‘N’ and m >= n: find the least squares solution of an overdetermined system, i.e., solve the least squares problem minimize || B - A*X ||.
-
If TRANS = ‘N’ and m < n: find the minimum norm solution of an underdetermined system A * X = B.
-
If TRANS = ‘C’ and m >= n: find the minimum norm solution of an underdetermined system A**H * X = B.
-
If TRANS = ‘C’ and m < n: find the least squares solution of an overdetermined system, i.e., solve the least squares problem minimize || B - A**H * X ||.
Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X.
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 1402
static VALUE
lapack_s_cgels(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgels, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"cgels");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.cgelsd(a, b, rcond: -1, order: 'R') ⇒ [b, s, rank, info]
CGELSD computes the minimum-norm solution to a real linear least squares problem:
minimize 2-norm(| b - A*x |)
using the singular value decomposition (SVD) of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The problem is solved in three steps:
(1) Reduce the coefficient matrix A to bidiagonal form with Householder transformations, reducing the original problem into a “bidiagonal least squares problem” (BLS)
(2) Solve the BLS using a divide and conquer approach.
(3) Apply back all the Householder transformations to solve the original least squares problem.
The effective rank of A is determined by treating as zero those singular values which are less than RCOND times the largest singular value. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 1884
static VALUE
lapack_s_cgelsd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2},{cInt,1}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cT,1,shape_s},{cInt,0},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgelsd, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"cgelsd");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.cgelss(a, b, rcond: -1, order: 'R') ⇒ [a, b, s, rank, info]
CGELSS computes the minimum norm solution to a complex linear least squares problem: Minimize 2-norm(| b - A*x |). using the singular value decomposition (SVD) of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The effective rank of A is determined by treating as zero those singular values which are less than RCOND times the largest singular value.
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 1637
static VALUE
lapack_s_cgelss(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2},{cInt,1}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cT,1,shape_s},{cInt,0},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgelss, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"cgelss");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.cgelsy(a, b, jpvt, rcond: -1, order: 'R') ⇒ [a, b, jpvt, rank, info]
CGELSY computes the minimum-norm solution to a complex linear least squares problem:
minimize || A * X - B ||
using a complete orthogonal factorization of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The routine first computes a QR factorization with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated condition number is less than 1/RCOND. The order of R11, RANK, is the effective rank of A. Then, R22 is considered to be negligible, and R12 is annihilated by unitary transformations from the right, arriving at the complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The minimum-norm solution is then
X = P * Z**H [ inv(T11)*Q1**H*B ]
[ 0 ]
where Q1 consists of the first RANK columns of Q. This routine is basically identical to the original xGELSX except three differences:
o The permutation of matrix B (the right hand side) is faster and
more simple.
o The call to the subroutine xGEQPF has been substituted by the
the call to the subroutine xGEQP3. This subroutine is a Blas-3
version of the QR factorization with column pivoting.
o Matrix B (the right hand side) is updated with Blas-3.
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 2146
static VALUE
lapack_s_cgelsy(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2},{cInt,1}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cT,1,shape_s},{cInt,0},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgelsy, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"cgelsy");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.cgeqlf(a, [order: 'R']) ⇒ [a, tau, info]
CGEQLF computes a QL factorization of a complex M-by-N matrix A: A = Q * L.
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 3735
static VALUE
lapack_s_cgeqlf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgeqlf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"cgeqlf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.cgeqp3(a, jpvt, [order: 'R']) ⇒ [a, jpvt, tau, info]
CGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 4048
static VALUE
lapack_s_cgeqp3(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2},{OVERWRITE,1}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgeqp3, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"cgeqp3");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.cgeqrf(a, [order: 'R']) ⇒ [a, tau, info]
CGEQRF computes a QR factorization of a complex M-by-N matrix A: A = Q * R.
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 3423
static VALUE
lapack_s_cgeqrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgeqrf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"cgeqrf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.cgerqf(a, [order: 'R']) ⇒ [a, tau, info]
CGERQF computes an RQ factorization of a complex M-by-N matrix A: A = R * Q.
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 3579
static VALUE
lapack_s_cgerqf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgerqf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"cgerqf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.cgesdd(a, [jobz: 'A', order:'R']) ⇒ [sigma, u, vt, info]
CGESDD computes the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally computing the left and/or right singular vectors, by using divide-and-conquer method. The SVD is written
A = U * SIGMA * conjugate-transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M unitary matrix, and V is an N-by-N unitary matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A. Note that the routine returns VT = V**H, not V. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 1150
static VALUE
lapack_s_cgesdd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#if !SDD
VALUE tmpbuf;
#endif
VALUE a, ans;
int m, n, min_mn, tmp;
narray_t *na1;
size_t shape_s[1], shape_u[2], shape_vt[2];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[4] = {{cRT,1,shape_s},{cT,2,shape_u},
{cT,2,shape_vt},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgesdd, NO_LOOP|NDF_EXTRACT, 1, 4, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobu,id_jobvt,id_jobz};
CHECK_FUNC(func_p,"cgesdd");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
#if SDD
g.jobz = option_job(opts[3],'A','N');
g.jobu = g.jobvt = g.jobz;
#else
g.jobu = option_job(opts[1],'A','N');
g.jobvt = option_job(opts[2],'A','N');
if (g.jobu=='O' && g.jobvt=='O') {
rb_raise(rb_eArgError,"JOBVT and JOBU cannot both be 'O'");
}
#endif
if (g.jobu=='O' || g.jobvt=='O') {
if (CLASS_OF(a) != cT) {
rb_raise(rb_eTypeError,"type of matrix a is invalid for overwrite");
}
} else {
COPY_OR_CAST_TO(a,cT);
}
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if SDD
if (g.jobz=='O') {
if (m >= n) { g.jobvt='A';} else { g.jobu='A';}
}
#endif
// output S
shape_s[0] = min_mn = min_(m,n);
// output U
switch(g.jobu){
case 'A':
shape_u[0] = m;
shape_u[1] = m;
break;
case 'S':
shape_u[0] = m;
shape_u[1] = min_mn;
SWAP_IFCOL(g.order,shape_u[0],shape_u[1]);
break;
case 'O':
case 'N':
aout[1].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobu='%c'",g.jobu);
}
// output VT
switch(g.jobvt){
case 'A':
shape_vt[0] = n;
shape_vt[1] = n;
break;
case 'S':
shape_vt[0] = min_mn;
shape_vt[1] = n;
SWAP_IFCOL(g.order, shape_vt[0], shape_vt[1]);
break;
case 'O':
case 'N':
aout[2].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobvt='%c'",g.jobvt);
}
#if !SDD
g.superb = (rtype*)rb_alloc_tmp_buffer(&tmpbuf, min_mn*sizeof(rtype));
#endif
ans = na_ndloop3(&ndf, &g, 1, a);
#if !SDD
rb_free_tmp_buffer(&tmpbuf);
#endif
if (g.jobu=='O') { RARRAY_ASET(ans,1,a); } else
if (aout[1].dim == 0) { RARRAY_ASET(ans,1,Qnil); }
if (g.jobvt=='O') { RARRAY_ASET(ans,2,a); } else
if (aout[2].dim == 0) { RARRAY_ASET(ans,2,Qnil); }
return ans;
}
|
.cgesv(a, b, [order: 'R']) ⇒ [a, b, ipiv, info]
CGESV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices. The LU decomposition with partial pivoting and row interchanges is used to factor A as
A = P * L * U,
where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 254
static VALUE
lapack_s_cgesv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
narray_t *na1, *na2;
size_t n, nb, nrhs;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
size_t shape[2];
ndfunc_arg_out_t aout[2] = {{cInt,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgesv, NO_LOOP|NDF_EXTRACT, 2,2, ain,aout};
args_t g;
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
VALUE opts[2] = {Qundef,Qundef};
CHECK_FUNC(func_p,"cgesv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.order = option_order(opts[0]);
g.uplo = option_uplo(opts[1]);
COPY_OR_CAST_TO(a,cT);
COPY_OR_CAST_TO(b,cT);
GetNArray(a, na1);
GetNArray(b, na2);
CHECK_DIM_GE(na1, 2);
CHECK_DIM_GE(na2, 1);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
if (NA_NDIM(na2) == 1) {
ain[1].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col=a.row=%"SZF"u b.row=%"SZF"u", n, nb);
}
shape[0] = n;
shape[1] = nrhs;
#if !IPIV
ndf.aout++;
ndf.nout--;
#endif
ans = na_ndloop3(&ndf, &g, 2, a, b);
#if IPIV
return rb_ary_concat(rb_assoc_new(a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.cgesvd(a, [jobu: 'A', jobvt:'A', order:'R']) ⇒ [sigma, u, vt, info]
CGESVD computes the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally computing the left and/or right singular vectors. The SVD is written
A = U * SIGMA * conjugate-transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M unitary matrix, and V is an N-by-N unitary matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A. Note that the routine returns V**H, not V.
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 933
static VALUE
lapack_s_cgesvd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#if !SDD
VALUE tmpbuf;
#endif
VALUE a, ans;
int m, n, min_mn, tmp;
narray_t *na1;
size_t shape_s[1], shape_u[2], shape_vt[2];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[4] = {{cRT,1,shape_s},{cT,2,shape_u},
{cT,2,shape_vt},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgesvd, NO_LOOP|NDF_EXTRACT, 1, 4, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobu,id_jobvt,id_jobz};
CHECK_FUNC(func_p,"cgesvd");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
#if SDD
g.jobz = option_job(opts[3],'A','N');
g.jobu = g.jobvt = g.jobz;
#else
g.jobu = option_job(opts[1],'A','N');
g.jobvt = option_job(opts[2],'A','N');
if (g.jobu=='O' && g.jobvt=='O') {
rb_raise(rb_eArgError,"JOBVT and JOBU cannot both be 'O'");
}
#endif
if (g.jobu=='O' || g.jobvt=='O') {
if (CLASS_OF(a) != cT) {
rb_raise(rb_eTypeError,"type of matrix a is invalid for overwrite");
}
} else {
COPY_OR_CAST_TO(a,cT);
}
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if SDD
if (g.jobz=='O') {
if (m >= n) { g.jobvt='A';} else { g.jobu='A';}
}
#endif
// output S
shape_s[0] = min_mn = min_(m,n);
// output U
switch(g.jobu){
case 'A':
shape_u[0] = m;
shape_u[1] = m;
break;
case 'S':
shape_u[0] = m;
shape_u[1] = min_mn;
SWAP_IFCOL(g.order,shape_u[0],shape_u[1]);
break;
case 'O':
case 'N':
aout[1].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobu='%c'",g.jobu);
}
// output VT
switch(g.jobvt){
case 'A':
shape_vt[0] = n;
shape_vt[1] = n;
break;
case 'S':
shape_vt[0] = min_mn;
shape_vt[1] = n;
SWAP_IFCOL(g.order, shape_vt[0], shape_vt[1]);
break;
case 'O':
case 'N':
aout[2].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobvt='%c'",g.jobvt);
}
#if !SDD
g.superb = (rtype*)rb_alloc_tmp_buffer(&tmpbuf, min_mn*sizeof(rtype));
#endif
ans = na_ndloop3(&ndf, &g, 1, a);
#if !SDD
rb_free_tmp_buffer(&tmpbuf);
#endif
if (g.jobu=='O') { RARRAY_ASET(ans,1,a); } else
if (aout[1].dim == 0) { RARRAY_ASET(ans,1,Qnil); }
if (g.jobvt=='O') { RARRAY_ASET(ans,2,a); } else
if (aout[2].dim == 0) { RARRAY_ASET(ans,2,Qnil); }
return ans;
}
|
.cgetrf(a, [order: 'R']) ⇒ [a, ipiv, info]
CGETRF computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges. The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n). This is the right-looking Level 3 BLAS version of the algorithm.
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 4510
static VALUE
lapack_s_cgetrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,1,shape_piv},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgetrf, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"cgetrf");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.cgetri(a, ipiv, [order: 'R']) ⇒ [a, info]
CGETRI computes the inverse of a matrix using the LU factorization computed by CGETRF. This method inverts U and then computes inv(A) by solving the system inv(A)*L = inv(U) for inv(A).
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 4750
static VALUE
lapack_s_cgetri(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgetri, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"cgetri");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.cgetrs(a, ipiv, b, [trans: 'N', order:'R']) ⇒ [b, info]
CGETRS solves a system of linear equations
A * X = B, A**T * X = B, or A**H * X = B
with a general N-by-N matrix A using the LU factorization computed by CGETRF.
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 4991
static VALUE
lapack_s_cgetrs(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cgetrs, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"cgetrs");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.cggev(a, b, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [alpha, beta, vl, vr, info]
CGGEV computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. A generalized eigenvalue for a pair of matrices (A,B) is a scalar lambda or a ratio alpha/beta = lambda, such that A - lambda*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. The right generalized eigenvector v(j) corresponding to the generalized eigenvalue lambda(j) of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j).
The left generalized eigenvector u(j) corresponding to the generalized eigenvalues lambda(j) of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B
where u(j)**H is the conjugate-transpose of u(j).
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 2539
static VALUE
lapack_s_cggev(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb;
narray_t *na1, *na2;
/**/
size_t shape[2];
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[6-CZ] = {{cT,1,shape},{cT,1,shape},{cT,2,shape},{cT,2,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cggev, NO_LOOP|NDF_EXTRACT, 2, 6-CZ, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobvl,id_jobvr};
CHECK_FUNC(func_p,"cggev");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobvl = option_job(opts[1],'V','N');
g.jobvr = option_job(opts[2],'V','N');
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b",na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError,"matrix a and b must have same size");
}
shape[0] = shape[1] = n;
if (g.jobvl=='N') { aout[3-CZ].dim = 0; }
if (g.jobvr=='N') { aout[4-CZ].dim = 0; }
ans = na_ndloop3(&ndf, &g, 2, a, b);
if (aout[4-CZ].dim == 0) { RARRAY_ASET(ans,4-CZ,Qnil); }
if (aout[3-CZ].dim == 0) { RARRAY_ASET(ans,3-CZ,Qnil); }
return ans;
}
|
.cheev(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
CHEEV computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A.
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 2665
static VALUE
lapack_s_cheev(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n;
narray_t *na1;
size_t shape[1];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cheev, NO_LOOP|NDF_EXTRACT, 1, 2, ain, aout};
args_t g = {0,0,0};
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobz,id_uplo};
CHECK_FUNC(func_p,"cheev");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
if (m != n) {
rb_raise(nary_eShapeError,"matrix must be square");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 1, a);
return rb_ary_new3(3, a, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.cheevd(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
CHEEVD computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 2790
static VALUE
lapack_s_cheevd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n;
narray_t *na1;
size_t shape[1];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cheevd, NO_LOOP|NDF_EXTRACT, 1, 2, ain, aout};
args_t g = {0,0,0};
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobz,id_uplo};
CHECK_FUNC(func_p,"cheevd");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
if (m != n) {
rb_raise(nary_eShapeError,"matrix must be square");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 1, a);
return rb_ary_new3(3, a, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.chegv(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
CHEGV computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian and B is also positive definite.
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 2931
static VALUE
lapack_s_chegv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb;
narray_t *na1, *na2;
size_t shape[1];
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_chegv, NO_LOOP|NDF_EXTRACT, 2, 2, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobz,id_uplo,id_itype};
CHECK_FUNC(func_p,"chegv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
g.itype = NUM2INT(option_value(opts[3],INT2FIX(1)));
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b",na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError,"matrix a and b must have same size");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_ary_new3(4, a, b, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.chegvd(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
CHEGVD computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 3091
static VALUE
lapack_s_chegvd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb;
narray_t *na1, *na2;
size_t shape[1];
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_chegvd, NO_LOOP|NDF_EXTRACT, 2, 2, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobz,id_uplo,id_itype};
CHECK_FUNC(func_p,"chegvd");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
g.itype = NUM2INT(option_value(opts[3],INT2FIX(1)));
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b",na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError,"matrix a and b must have same size");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_ary_new3(4, a, b, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.chegvx(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R', range:'I', il: 1, il: 2]) ⇒ [a, b, w, z, ifail, info]
CHEGVX computes selected eigenvalues, and optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 3277
static VALUE
lapack_s_chegvx(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb, m;
narray_t *na1, *na2;
size_t w_shape[1];
size_t z_shape[2];
size_t ifail_shape[1];
ndfunc_arg_in_t ain[2] = {{OVERWRITE, 2}, {OVERWRITE, 2}};
ndfunc_arg_out_t aout[4] = {{cRT, 1, w_shape}, {cT, 2, z_shape}, {cI, 1, ifail_shape}, {cInt, 0}};
ndfunc_t ndf = {&iter_lapack_s_chegvx, NO_LOOP | NDF_EXTRACT, 2, 4, ain, aout};
args_t g;
VALUE opts[7] = {Qundef, Qundef, Qundef, Qundef, Qundef, Qundef, Qundef};
VALUE kw_hash = Qnil;
ID kw_table[7] = {id_order, id_jobz, id_uplo, id_itype, id_range, id_il, id_iu};
CHECK_FUNC(func_p,"chegvx");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 7, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1], 'V', 'N');
g.uplo = option_uplo(opts[2]);
g.itype = NUM2INT(option_value(opts[3], INT2FIX(1)));
g.range = option_range(opts[4], 'A', 'I');
g.il = NUM2INT(option_value(opts[5], INT2FIX(1)));
g.iu = NUM2INT(option_value(opts[6], INT2FIX(1)));
COPY_OR_CAST_TO(a, cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b, cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a", na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b", na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError, "matrix a and b must have same size");
}
m = g.range == 'I' ? g.iu - g.il + 1 : n;
w_shape[0] = m;
z_shape[0] = n;
z_shape[1] = m;
ifail_shape[0] = m;
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_ary_new3(6, a, b, RARRAY_AREF(ans, 0), RARRAY_AREF(ans, 1), RARRAY_AREF(ans, 2), RARRAY_AREF(ans, 3));
}
|
.chesv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, ipiv, info]
CHESV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS matrices. The diagonal pivoting method is used to factor A as
A = U * D * U**H, if UPLO = 'U', or
A = L * D * L**H, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B.
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 773
static VALUE
lapack_s_chesv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
narray_t *na1, *na2;
size_t n, nb, nrhs;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
size_t shape[2];
ndfunc_arg_out_t aout[2] = {{cInt,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_chesv, NO_LOOP|NDF_EXTRACT, 2,2, ain,aout};
args_t g;
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
VALUE opts[2] = {Qundef,Qundef};
CHECK_FUNC(func_p,"chesv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.order = option_order(opts[0]);
g.uplo = option_uplo(opts[1]);
COPY_OR_CAST_TO(a,cT);
COPY_OR_CAST_TO(b,cT);
GetNArray(a, na1);
GetNArray(b, na2);
CHECK_DIM_GE(na1, 2);
CHECK_DIM_GE(na2, 1);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
if (NA_NDIM(na2) == 1) {
ain[1].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col=a.row=%"SZF"u b.row=%"SZF"u", n, nb);
}
shape[0] = n;
shape[1] = nrhs;
#if !IPIV
ndf.aout++;
ndf.nout--;
#endif
ans = na_ndloop3(&ndf, &g, 2, a, b);
#if IPIV
return rb_ary_concat(rb_assoc_new(a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.chetrf(a, [uplo: 'U', order:'R']) ⇒ [a, ipiv, info]
CHETRF computes the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting method. The form of the factorization is
A = U*D*U**H or A = L*D*L**H
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. This is the blocked version of the algorithm, calling Level 3 BLAS.
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 6004
static VALUE
lapack_s_chetrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,1,shape_piv},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_chetrf, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"chetrf");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.chetri(a, ipiv, [uplo: 'U', order:'R']) ⇒ [a, info]
CHETRI computes the inverse of a complex Hermitian indefinite matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by CHETRF.
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 6249
static VALUE
lapack_s_chetri(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_chetri, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"chetri");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.chetrs(a, ipiv, b, [uplo: 'U', order:'R']) ⇒ [b, info]
CHETRS solves a system of linear equations A*X = B with a complex Hermitian matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by CHETRF.
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 6487
static VALUE
lapack_s_chetrs(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_chetrs, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"chetrs");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.clange(a, norm, [order: 'R']) ⇒ Numo::SFloat
CLANGE returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex matrix A.
CLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 123
static VALUE
lapack_s_clange(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, norm, ans;
narray_t *na1;
ndfunc_arg_in_t ain[1] = {{cT,2}};
ndfunc_arg_out_t aout[1] = {{cRT,0}};
ndfunc_t ndf = {&iter_lapack_s_clange, NO_LOOP|NDF_EXTRACT, 1, 1, ain, aout};
args_t g;
VALUE opts[1] = {Qundef};
ID kw_table[1] = {id_order};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"clange");
rb_scan_args(argc, argv, "2:", &a, &norm, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
g.order = option_order(opts[0]);
g.norm = option_job(norm,'F','F');
//reduce = nary_reduce_options(Qnil, &opts[1], 1, &a, &ndf);
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
//COPY_OR_CAST_TO(a,cT); // not overwrite
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
ans = na_ndloop3(&ndf, &g, 1, a);
return ans;
}
|
.cposv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, info]
CPOSV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N Hermitian positive definite matrix and X and B are N-by-NRHS matrices. The Cholesky decomposition is used to factor A as
A = U**H* U, if UPLO = 'U', or
A = L * L**H, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations A * X = B.
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 595
static VALUE
lapack_s_cposv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
narray_t *na1, *na2;
size_t n, nb, nrhs;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
size_t shape[2];
ndfunc_arg_out_t aout[2] = {{cInt,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cposv, NO_LOOP|NDF_EXTRACT, 2,2, ain,aout};
args_t g;
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
VALUE opts[2] = {Qundef,Qundef};
CHECK_FUNC(func_p,"cposv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.order = option_order(opts[0]);
g.uplo = option_uplo(opts[1]);
COPY_OR_CAST_TO(a,cT);
COPY_OR_CAST_TO(b,cT);
GetNArray(a, na1);
GetNArray(b, na2);
CHECK_DIM_GE(na1, 2);
CHECK_DIM_GE(na2, 1);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
if (NA_NDIM(na2) == 1) {
ain[1].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col=a.row=%"SZF"u b.row=%"SZF"u", n, nb);
}
shape[0] = n;
shape[1] = nrhs;
#if !IPIV
ndf.aout++;
ndf.nout--;
#endif
ans = na_ndloop3(&ndf, &g, 2, a, b);
#if IPIV
return rb_ary_concat(rb_assoc_new(a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.cpotrf(a, [uplo: 'U', order:'R']) ⇒ [a, info]
CPOTRF computes the Cholesky factorization of a complex Hermitian positive definite matrix A. The factorization has the form
A = U**H * U, if UPLO = 'U', or
A = L * L**H, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular. This is the block version of the algorithm, calling Level 3 BLAS.
6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 6739
static VALUE
lapack_s_cpotrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cpotrf, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"cpotrf");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.cpotri(a, [uplo: 'U', order:'R']) ⇒ [a, info]
CPOTRI computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF.
6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 6980
static VALUE
lapack_s_cpotri(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cpotri, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"cpotri");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.cpotrs(a, b, [uplo: 'U', order:'R']) ⇒ [b, info]
CPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF.
7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 7217
static VALUE
lapack_s_cpotrs(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cpotrs, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"cpotrs");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.csysv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, ipiv, info]
CSYSV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. The diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B.
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 432
static VALUE
lapack_s_csysv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
narray_t *na1, *na2;
size_t n, nb, nrhs;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
size_t shape[2];
ndfunc_arg_out_t aout[2] = {{cInt,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_csysv, NO_LOOP|NDF_EXTRACT, 2,2, ain,aout};
args_t g;
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
VALUE opts[2] = {Qundef,Qundef};
CHECK_FUNC(func_p,"csysv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.order = option_order(opts[0]);
g.uplo = option_uplo(opts[1]);
COPY_OR_CAST_TO(a,cT);
COPY_OR_CAST_TO(b,cT);
GetNArray(a, na1);
GetNArray(b, na2);
CHECK_DIM_GE(na1, 2);
CHECK_DIM_GE(na2, 1);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
if (NA_NDIM(na2) == 1) {
ain[1].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col=a.row=%"SZF"u b.row=%"SZF"u", n, nb);
}
shape[0] = n;
shape[1] = nrhs;
#if !IPIV
ndf.aout++;
ndf.nout--;
#endif
ans = na_ndloop3(&ndf, &g, 2, a, b);
#if IPIV
return rb_ary_concat(rb_assoc_new(a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.csytrf(a, [uplo: 'U', order:'R']) ⇒ [a, ipiv, info]
CSYTRF computes the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting method. The form of the factorization is
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with with 1-by-1 and 2-by-2 diagonal blocks. This is the blocked version of the algorithm, calling Level 3 BLAS.
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 5256
static VALUE
lapack_s_csytrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,1,shape_piv},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_csytrf, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"csytrf");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.csytri(a, ipiv, [uplo: 'U', order:'R']) ⇒ [a, info]
CSYTRI computes the inverse of a complex symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSYTRF.
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 5501
static VALUE
lapack_s_csytri(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_csytri, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"csytri");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.csytrs(a, ipiv, b, [uplo: 'U', order:'R']) ⇒ [b, info]
CSYTRS solves a system of linear equations A*X = B with a complex symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSYTRF.
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 5739
static VALUE
lapack_s_csytrs(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_csytrs, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"csytrs");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.ctzrzf(a, [order: 'R']) ⇒ [a, tau, info]
CTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A to upper triangular form by means of unitary transformations. The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N unitary matrix and R is an M-by-M upper triangular matrix.
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 4206
static VALUE
lapack_s_ctzrzf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_ctzrzf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"ctzrzf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.cungqr(a, tau, order: 'R') ⇒ [a, info]
CUNGQR generates an M-by-N complex matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M
Q = H(1) H(2) . . . H(k)
as returned by CGEQRF.
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 |
# File 'ext/numo/linalg/lapack/lapack_c.c', line 4342
static VALUE
lapack_s_cungqr(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, tau, ans;
int m, n, k, tmp;
narray_t *na1, *na2;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cT,1}};
ndfunc_arg_out_t aout[1] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_cungqr, NO_LOOP|NDF_EXTRACT, 2,1, ain,aout};
args_t g = {0};
VALUE opts[1] = {Qundef};
VALUE kw_hash = Qnil;
ID kw_table[1] = {id_order};
CHECK_FUNC(func_p,"cungqr");
rb_scan_args(argc, argv, "2:", &a, &tau, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
g.order = option_order(opts[0]);
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
GetNArray(tau, na2);
CHECK_DIM_GE(na2, 1);
k = COL_SIZE(na2);
if (m < n) {
rb_raise(nary_eShapeError,
"a row length (m) must be >= a column length (n): m=%d n=%d",
m,n);
}
if (n < k) {
rb_raise(nary_eShapeError,
"a column length (n) must be >= tau length (k): n=%d, k=%d",
k,n);
}
SWAP_IFCOL(g.order,m,n);
ans = na_ndloop3(&ndf, &g, 2, a, tau);
return rb_assoc_new(a, ans);
}
|
.dgeev(a, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [wr, wi, vl, vr, info]
DGEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate-transpose of u(j). The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 2206
static VALUE
lapack_s_dgeev(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n;
narray_t *na1;
/**/
size_t shape[2];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[5-CZ] = {{cT,1,shape},{cT,1,shape},{cT,2,shape},{cT,2,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgeev, NO_LOOP|NDF_EXTRACT, 1, 5-CZ, ain, aout};
args_t g = {0,0,0};
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobvl,id_jobvr};
CHECK_FUNC(func_p,"dgeev");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobvl = option_job(opts[1],'V','N');
g.jobvr = option_job(opts[2],'V','N');
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
if (m != n) {
rb_raise(nary_eShapeError,"matrix must be square");
}
shape[0] = shape[1] = n;
if (g.jobvl=='N') { aout[2-CZ].dim = 0; }
if (g.jobvr=='N') { aout[3-CZ].dim = 0; }
ans = na_ndloop3(&ndf, &g, 1, a);
if (aout[3-CZ].dim == 0) { RARRAY_ASET(ans,3-CZ,Qnil); }
if (aout[2-CZ].dim == 0) { RARRAY_ASET(ans,2-CZ,Qnil); }
return ans;
}
|
.dgelqf(a, [order: 'R']) ⇒ [a, tau, info]
DGELQF computes an LQ factorization of a real M-by-N matrix A: A = L * Q.
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 3744
static VALUE
lapack_s_dgelqf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgelqf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dgelqf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.dgels(a, b, trans: 'N', order: 'R') ⇒ [a, b, info]
DGELS solves overdetermined or underdetermined real linear systems involving an M-by-N matrix A, or its transpose, using a QR or LQ factorization of A. It is assumed that A has full rank. The following options are provided:
-
If TRANS = ‘N’ and m >= n: find the least squares solution of an overdetermined system, i.e., solve the least squares problem minimize || B - A*X ||.
-
If TRANS = ‘N’ and m < n: find the minimum norm solution of an underdetermined system A * X = B.
-
If TRANS = ‘T’ and m >= n: find the minimum norm solution of an underdetermined system A**T * X = B.
-
If TRANS = ‘T’ and m < n: find the least squares solution of an overdetermined system, i.e., solve the least squares problem minimize || B - A**T * X ||.
Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X.
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 1229
static VALUE
lapack_s_dgels(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgels, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"dgels");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.dgelsd(a, b, rcond: -1, order: 'R') ⇒ [b, s, rank, info]
DGELSD computes the minimum-norm solution to a real linear least squares problem:
minimize 2-norm(| b - A*x |)
using the singular value decomposition (SVD) of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The problem is solved in three steps:
(1) Reduce the coefficient matrix A to bidiagonal form with Householder transformations, reducing the original problem into a “bidiagonal least squares problem” (BLS)
(2) Solve the BLS using a divide and conquer approach.
(3) Apply back all the Householder transformations to solve the original least squares problem.
The effective rank of A is determined by treating as zero those singular values which are less than RCOND times the largest singular value. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 1711
static VALUE
lapack_s_dgelsd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2},{cInt,1}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cT,1,shape_s},{cInt,0},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgelsd, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"dgelsd");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.dgelss(a, b, rcond: -1, order: 'R') ⇒ [a, b, s, rank, info]
DGELSS computes the minimum norm solution to a real linear least squares problem: Minimize 2-norm(| b - A*x |). using the singular value decomposition (SVD) of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The effective rank of A is determined by treating as zero those singular values which are less than RCOND times the largest singular value.
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 1464
static VALUE
lapack_s_dgelss(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2},{cInt,1}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cT,1,shape_s},{cInt,0},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgelss, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"dgelss");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.dgelsy(a, b, jpvt, rcond: -1, order: 'R') ⇒ [a, b, jpvt, rank, info]
DGELSY computes the minimum-norm solution to a real linear least squares problem:
minimize || A * X - B ||
using a complete orthogonal factorization of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The routine first computes a QR factorization with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated condition number is less than 1/RCOND. The order of R11, RANK, is the effective rank of A. Then, R22 is considered to be negligible, and R12 is annihilated by orthogonal transformations from the right, arriving at the complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The minimum-norm solution is then
X = P * Z**T [ inv(T11)*Q1**T*B ]
[ 0 ]
where Q1 consists of the first RANK columns of Q. This routine is basically identical to the original xGELSX except three differences:
o The call to the subroutine xGEQPF has been substituted by the
the call to the subroutine xGEQP3. This subroutine is a Blas-3
version of the QR factorization with column pivoting.
o Matrix B (the right hand side) is updated with Blas-3.
o The permutation of matrix B (the right hand side) is faster and
more simple.
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 1973
static VALUE
lapack_s_dgelsy(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2},{cInt,1}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cT,1,shape_s},{cInt,0},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgelsy, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"dgelsy");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.dgeqlf(a, [order: 'R']) ⇒ [a, tau, info]
DGEQLF computes a QL factorization of a real M-by-N matrix A: A = Q * L.
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 3591
static VALUE
lapack_s_dgeqlf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgeqlf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dgeqlf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.dgeqp3(a, jpvt, [order: 'R']) ⇒ [a, jpvt, tau, info]
DGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 3904
static VALUE
lapack_s_dgeqp3(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2},{OVERWRITE,1}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgeqp3, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dgeqp3");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.dgeqrf(a, [order: 'R']) ⇒ [a, tau, info]
DGEQRF computes a QR factorization of a real M-by-N matrix A: A = Q * R.
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 3279
static VALUE
lapack_s_dgeqrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgeqrf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dgeqrf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.dgerqf(a, [order: 'R']) ⇒ [a, tau, info]
DGERQF computes an RQ factorization of a real M-by-N matrix A: A = R * Q.
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 3435
static VALUE
lapack_s_dgerqf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgerqf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dgerqf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.dgesdd(a, [jobz: 'A', order:'R']) ⇒ [sigma, u, vt, info]
DGESDD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and right singular vectors. If singular vectors are desired, it uses a divide-and-conquer algorithm. The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A. Note that the routine returns VT = V**T, not V. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 976
static VALUE
lapack_s_dgesdd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#if !SDD
VALUE tmpbuf;
#endif
VALUE a, ans;
int m, n, min_mn, tmp;
narray_t *na1;
size_t shape_s[1], shape_u[2], shape_vt[2];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[4] = {{cRT,1,shape_s},{cT,2,shape_u},
{cT,2,shape_vt},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgesdd, NO_LOOP|NDF_EXTRACT, 1, 4, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobu,id_jobvt,id_jobz};
CHECK_FUNC(func_p,"dgesdd");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
#if SDD
g.jobz = option_job(opts[3],'A','N');
g.jobu = g.jobvt = g.jobz;
#else
g.jobu = option_job(opts[1],'A','N');
g.jobvt = option_job(opts[2],'A','N');
if (g.jobu=='O' && g.jobvt=='O') {
rb_raise(rb_eArgError,"JOBVT and JOBU cannot both be 'O'");
}
#endif
if (g.jobu=='O' || g.jobvt=='O') {
if (CLASS_OF(a) != cT) {
rb_raise(rb_eTypeError,"type of matrix a is invalid for overwrite");
}
} else {
COPY_OR_CAST_TO(a,cT);
}
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if SDD
if (g.jobz=='O') {
if (m >= n) { g.jobvt='A';} else { g.jobu='A';}
}
#endif
// output S
shape_s[0] = min_mn = min_(m,n);
// output U
switch(g.jobu){
case 'A':
shape_u[0] = m;
shape_u[1] = m;
break;
case 'S':
shape_u[0] = m;
shape_u[1] = min_mn;
SWAP_IFCOL(g.order,shape_u[0],shape_u[1]);
break;
case 'O':
case 'N':
aout[1].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobu='%c'",g.jobu);
}
// output VT
switch(g.jobvt){
case 'A':
shape_vt[0] = n;
shape_vt[1] = n;
break;
case 'S':
shape_vt[0] = min_mn;
shape_vt[1] = n;
SWAP_IFCOL(g.order, shape_vt[0], shape_vt[1]);
break;
case 'O':
case 'N':
aout[2].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobvt='%c'",g.jobvt);
}
#if !SDD
g.superb = (rtype*)rb_alloc_tmp_buffer(&tmpbuf, min_mn*sizeof(rtype));
#endif
ans = na_ndloop3(&ndf, &g, 1, a);
#if !SDD
rb_free_tmp_buffer(&tmpbuf);
#endif
if (g.jobu=='O') { RARRAY_ASET(ans,1,a); } else
if (aout[1].dim == 0) { RARRAY_ASET(ans,1,Qnil); }
if (g.jobvt=='O') { RARRAY_ASET(ans,2,a); } else
if (aout[2].dim == 0) { RARRAY_ASET(ans,2,Qnil); }
return ans;
}
|
.dgesv(a, b, [order: 'R']) ⇒ [a, b, ipiv, info]
DGESV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices. The LU decomposition with partial pivoting and row interchanges is used to factor A as
A = P * L * U,
where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 256
static VALUE
lapack_s_dgesv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
narray_t *na1, *na2;
size_t n, nb, nrhs;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
size_t shape[2];
ndfunc_arg_out_t aout[2] = {{cInt,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgesv, NO_LOOP|NDF_EXTRACT, 2,2, ain,aout};
args_t g;
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
VALUE opts[2] = {Qundef,Qundef};
CHECK_FUNC(func_p,"dgesv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.order = option_order(opts[0]);
g.uplo = option_uplo(opts[1]);
COPY_OR_CAST_TO(a,cT);
COPY_OR_CAST_TO(b,cT);
GetNArray(a, na1);
GetNArray(b, na2);
CHECK_DIM_GE(na1, 2);
CHECK_DIM_GE(na2, 1);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
if (NA_NDIM(na2) == 1) {
ain[1].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col=a.row=%"SZF"u b.row=%"SZF"u", n, nb);
}
shape[0] = n;
shape[1] = nrhs;
#if !IPIV
ndf.aout++;
ndf.nout--;
#endif
ans = na_ndloop3(&ndf, &g, 2, a, b);
#if IPIV
return rb_ary_concat(rb_assoc_new(a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.dgesvd(a, [jobu: 'A', jobvt:'A', order:'R']) ⇒ [sigma, u, vt, info]
DGESVD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors. The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A. Note that the routine returns V**T, not V.
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 757
static VALUE
lapack_s_dgesvd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#if !SDD
VALUE tmpbuf;
#endif
VALUE a, ans;
int m, n, min_mn, tmp;
narray_t *na1;
size_t shape_s[1], shape_u[2], shape_vt[2];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[4] = {{cRT,1,shape_s},{cT,2,shape_u},
{cT,2,shape_vt},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgesvd, NO_LOOP|NDF_EXTRACT, 1, 4, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobu,id_jobvt,id_jobz};
CHECK_FUNC(func_p,"dgesvd");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
#if SDD
g.jobz = option_job(opts[3],'A','N');
g.jobu = g.jobvt = g.jobz;
#else
g.jobu = option_job(opts[1],'A','N');
g.jobvt = option_job(opts[2],'A','N');
if (g.jobu=='O' && g.jobvt=='O') {
rb_raise(rb_eArgError,"JOBVT and JOBU cannot both be 'O'");
}
#endif
if (g.jobu=='O' || g.jobvt=='O') {
if (CLASS_OF(a) != cT) {
rb_raise(rb_eTypeError,"type of matrix a is invalid for overwrite");
}
} else {
COPY_OR_CAST_TO(a,cT);
}
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if SDD
if (g.jobz=='O') {
if (m >= n) { g.jobvt='A';} else { g.jobu='A';}
}
#endif
// output S
shape_s[0] = min_mn = min_(m,n);
// output U
switch(g.jobu){
case 'A':
shape_u[0] = m;
shape_u[1] = m;
break;
case 'S':
shape_u[0] = m;
shape_u[1] = min_mn;
SWAP_IFCOL(g.order,shape_u[0],shape_u[1]);
break;
case 'O':
case 'N':
aout[1].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobu='%c'",g.jobu);
}
// output VT
switch(g.jobvt){
case 'A':
shape_vt[0] = n;
shape_vt[1] = n;
break;
case 'S':
shape_vt[0] = min_mn;
shape_vt[1] = n;
SWAP_IFCOL(g.order, shape_vt[0], shape_vt[1]);
break;
case 'O':
case 'N':
aout[2].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobvt='%c'",g.jobvt);
}
#if !SDD
g.superb = (rtype*)rb_alloc_tmp_buffer(&tmpbuf, min_mn*sizeof(rtype));
#endif
ans = na_ndloop3(&ndf, &g, 1, a);
#if !SDD
rb_free_tmp_buffer(&tmpbuf);
#endif
if (g.jobu=='O') { RARRAY_ASET(ans,1,a); } else
if (aout[1].dim == 0) { RARRAY_ASET(ans,1,Qnil); }
if (g.jobvt=='O') { RARRAY_ASET(ans,2,a); } else
if (aout[2].dim == 0) { RARRAY_ASET(ans,2,Qnil); }
return ans;
}
|
.dgetrf(a, [order: 'R']) ⇒ [a, ipiv, info]
DGETRF computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges. The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n). This is the right-looking Level 3 BLAS version of the algorithm.
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 4366
static VALUE
lapack_s_dgetrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,1,shape_piv},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgetrf, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dgetrf");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.dgetri(a, ipiv, [order: 'R']) ⇒ [a, info]
DGETRI computes the inverse of a matrix using the LU factorization computed by DGETRF. This method inverts U and then computes inv(A) by solving the system inv(A)*L = inv(U) for inv(A).
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 4606
static VALUE
lapack_s_dgetri(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgetri, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dgetri");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.dgetrs(a, ipiv, b, [trans: 'N', order:'R']) ⇒ [b, info]
DGETRS solves a system of linear equations
A * X = B or A**T * X = B
with a general N-by-N matrix A using the LU factorization computed by DGETRF.
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 4847
static VALUE
lapack_s_dgetrs(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dgetrs, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dgetrs");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.dggev(a, b, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [alphar, alphai, beta, vl, vr, info]
DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. A generalized eigenvalue for a pair of matrices (A,B) is a scalar lambda or a ratio alpha/beta = lambda, such that A - lambda*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. The right eigenvector v(j) corresponding to the eigenvalue lambda(j) of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j).
The left eigenvector u(j) corresponding to the eigenvalue lambda(j) of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B .
where u(j)**H is the conjugate-transpose of u(j).
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 2393
static VALUE
lapack_s_dggev(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb;
narray_t *na1, *na2;
/**/
size_t shape[2];
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[6-CZ] = {{cT,1,shape},{cT,1,shape},{cT,1,shape},{cT,2,shape},{cT,2,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dggev, NO_LOOP|NDF_EXTRACT, 2, 6-CZ, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobvl,id_jobvr};
CHECK_FUNC(func_p,"dggev");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobvl = option_job(opts[1],'V','N');
g.jobvr = option_job(opts[2],'V','N');
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b",na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError,"matrix a and b must have same size");
}
shape[0] = shape[1] = n;
if (g.jobvl=='N') { aout[3-CZ].dim = 0; }
if (g.jobvr=='N') { aout[4-CZ].dim = 0; }
ans = na_ndloop3(&ndf, &g, 2, a, b);
if (aout[4-CZ].dim == 0) { RARRAY_ASET(ans,4-CZ,Qnil); }
if (aout[3-CZ].dim == 0) { RARRAY_ASET(ans,3-CZ,Qnil); }
return ans;
}
|
.dlange(a, norm, [order: 'R']) ⇒ Numo::DFloat
DLANGE returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real matrix A.
DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 125
static VALUE
lapack_s_dlange(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, norm, ans;
narray_t *na1;
ndfunc_arg_in_t ain[1] = {{cT,2}};
ndfunc_arg_out_t aout[1] = {{cRT,0}};
ndfunc_t ndf = {&iter_lapack_s_dlange, NO_LOOP|NDF_EXTRACT, 1, 1, ain, aout};
args_t g;
VALUE opts[1] = {Qundef};
ID kw_table[1] = {id_order};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"dlange");
rb_scan_args(argc, argv, "2:", &a, &norm, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
g.order = option_order(opts[0]);
g.norm = option_job(norm,'F','F');
//reduce = nary_reduce_options(Qnil, &opts[1], 1, &a, &ndf);
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
//COPY_OR_CAST_TO(a,cT); // not overwrite
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
ans = na_ndloop3(&ndf, &g, 1, a);
return ans;
}
|
.dlopen(*args) ⇒ Object
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# File 'ext/numo/linalg/lapack/lapack.c', line 353
static VALUE
lapack_s_dlopen(int argc, VALUE *argv, VALUE mod)
{
int i, f;
VALUE lib, flag;
char *error;
void *handle;
i = rb_scan_args(argc, argv, "11", &lib, &flag);
if (i==2) {
f = NUM2INT(flag);
} else {
f = RTLD_LAZY;
}
#if defined(HAVE_DLFCN_H)
dlerror();
#endif
handle = dlopen(StringValueCStr(lib), f);
#if defined(HAVE_DLFCN_H)
if ( !handle && (error = dlerror()) ) {
rb_raise(rb_eRuntimeError, "%s", error);
}
#else
if ( !handle ) {
error = dlerror();
rb_raise(rb_eRuntimeError, "%s", error);
}
#endif
lapack_handle = handle;
return Qnil;
}
|
.dorgqr(a, tau, order: 'R') ⇒ [a, info]
DORGQR generates an M-by-N real matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M
Q = H(1) H(2) . . . H(k)
as returned by DGEQRF.
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 4198
static VALUE
lapack_s_dorgqr(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, tau, ans;
int m, n, k, tmp;
narray_t *na1, *na2;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cT,1}};
ndfunc_arg_out_t aout[1] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dorgqr, NO_LOOP|NDF_EXTRACT, 2,1, ain,aout};
args_t g = {0};
VALUE opts[1] = {Qundef};
VALUE kw_hash = Qnil;
ID kw_table[1] = {id_order};
CHECK_FUNC(func_p,"dorgqr");
rb_scan_args(argc, argv, "2:", &a, &tau, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
g.order = option_order(opts[0]);
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
GetNArray(tau, na2);
CHECK_DIM_GE(na2, 1);
k = COL_SIZE(na2);
if (m < n) {
rb_raise(nary_eShapeError,
"a row length (m) must be >= a column length (n): m=%d n=%d",
m,n);
}
if (n < k) {
rb_raise(nary_eShapeError,
"a column length (n) must be >= tau length (k): n=%d, k=%d",
k,n);
}
SWAP_IFCOL(g.order,m,n);
ans = na_ndloop3(&ndf, &g, 2, a, tau);
return rb_assoc_new(a, ans);
}
|
.dposv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, info]
DPOSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix and X and B are N-by-NRHS matrices. The Cholesky decomposition is used to factor A as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations A * X = B.
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 597
static VALUE
lapack_s_dposv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
narray_t *na1, *na2;
size_t n, nb, nrhs;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
size_t shape[2];
ndfunc_arg_out_t aout[2] = {{cInt,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dposv, NO_LOOP|NDF_EXTRACT, 2,2, ain,aout};
args_t g;
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
VALUE opts[2] = {Qundef,Qundef};
CHECK_FUNC(func_p,"dposv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.order = option_order(opts[0]);
g.uplo = option_uplo(opts[1]);
COPY_OR_CAST_TO(a,cT);
COPY_OR_CAST_TO(b,cT);
GetNArray(a, na1);
GetNArray(b, na2);
CHECK_DIM_GE(na1, 2);
CHECK_DIM_GE(na2, 1);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
if (NA_NDIM(na2) == 1) {
ain[1].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col=a.row=%"SZF"u b.row=%"SZF"u", n, nb);
}
shape[0] = n;
shape[1] = nrhs;
#if !IPIV
ndf.aout++;
ndf.nout--;
#endif
ans = na_ndloop3(&ndf, &g, 2, a, b);
#if IPIV
return rb_ary_concat(rb_assoc_new(a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.dpotrf(a, [uplo: 'U', order:'R']) ⇒ [a, info]
DPOTRF computes the Cholesky factorization of a real symmetric positive definite matrix A. The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular. This is the block version of the algorithm, calling Level 3 BLAS.
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 5847
static VALUE
lapack_s_dpotrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dpotrf, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dpotrf");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.dpotri(a, [uplo: 'U', order:'R']) ⇒ [a, info]
DPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 6088
static VALUE
lapack_s_dpotri(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dpotri, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dpotri");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.dpotrs(a, b, [uplo: 'U', order:'R']) ⇒ [b, info]
DPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 6325
static VALUE
lapack_s_dpotrs(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dpotrs, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dpotrs");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.dsyev(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
DSYEV computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 2519
static VALUE
lapack_s_dsyev(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n;
narray_t *na1;
size_t shape[1];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dsyev, NO_LOOP|NDF_EXTRACT, 1, 2, ain, aout};
args_t g = {0,0,0};
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobz,id_uplo};
CHECK_FUNC(func_p,"dsyev");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
if (m != n) {
rb_raise(nary_eShapeError,"matrix must be square");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 1, a);
return rb_ary_new3(3, a, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.dsyevd(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
DSYEVD computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Because of large use of BLAS of level 3, DSYEVD needs N**2 more workspace than DSYEVX.
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 2646
static VALUE
lapack_s_dsyevd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n;
narray_t *na1;
size_t shape[1];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dsyevd, NO_LOOP|NDF_EXTRACT, 1, 2, ain, aout};
args_t g = {0,0,0};
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobz,id_uplo};
CHECK_FUNC(func_p,"dsyevd");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
if (m != n) {
rb_raise(nary_eShapeError,"matrix must be square");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 1, a);
return rb_ary_new3(3, a, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.dsygv(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
DSYGV computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite.
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 2787
static VALUE
lapack_s_dsygv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb;
narray_t *na1, *na2;
size_t shape[1];
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dsygv, NO_LOOP|NDF_EXTRACT, 2, 2, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobz,id_uplo,id_itype};
CHECK_FUNC(func_p,"dsygv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
g.itype = NUM2INT(option_value(opts[3],INT2FIX(1)));
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b",na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError,"matrix a and b must have same size");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_ary_new3(4, a, b, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.dsygvd(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
DSYGVD computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 2947
static VALUE
lapack_s_dsygvd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb;
narray_t *na1, *na2;
size_t shape[1];
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dsygvd, NO_LOOP|NDF_EXTRACT, 2, 2, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobz,id_uplo,id_itype};
CHECK_FUNC(func_p,"dsygvd");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
g.itype = NUM2INT(option_value(opts[3],INT2FIX(1)));
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b",na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError,"matrix a and b must have same size");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_ary_new3(4, a, b, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.dsygvx(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R', range:'I', il: 1, il: 2]) ⇒ [a, b, w, z, ifail, info]
DSYGVX computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 3133
static VALUE
lapack_s_dsygvx(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb, m;
narray_t *na1, *na2;
size_t w_shape[1];
size_t z_shape[2];
size_t ifail_shape[1];
ndfunc_arg_in_t ain[2] = {{OVERWRITE, 2}, {OVERWRITE, 2}};
ndfunc_arg_out_t aout[4] = {{cRT, 1, w_shape}, {cT, 2, z_shape}, {cI, 1, ifail_shape}, {cInt, 0}};
ndfunc_t ndf = {&iter_lapack_s_dsygvx, NO_LOOP | NDF_EXTRACT, 2, 4, ain, aout};
args_t g;
VALUE opts[7] = {Qundef, Qundef, Qundef, Qundef, Qundef, Qundef, Qundef};
VALUE kw_hash = Qnil;
ID kw_table[7] = {id_order, id_jobz, id_uplo, id_itype, id_range, id_il, id_iu};
CHECK_FUNC(func_p,"dsygvx");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 7, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1], 'V', 'N');
g.uplo = option_uplo(opts[2]);
g.itype = NUM2INT(option_value(opts[3], INT2FIX(1)));
g.range = option_range(opts[4], 'A', 'I');
g.il = NUM2INT(option_value(opts[5], INT2FIX(1)));
g.iu = NUM2INT(option_value(opts[6], INT2FIX(1)));
COPY_OR_CAST_TO(a, cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b, cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a", na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b", na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError, "matrix a and b must have same size");
}
m = g.range == 'I' ? g.iu - g.il + 1 : n;
w_shape[0] = m;
z_shape[0] = n;
z_shape[1] = m;
ifail_shape[0] = m;
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_ary_new3(6, a, b, RARRAY_AREF(ans, 0), RARRAY_AREF(ans, 1), RARRAY_AREF(ans, 2), RARRAY_AREF(ans, 3));
}
|
.dsysv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, ipiv, info]
DSYSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. The diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B.
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 434
static VALUE
lapack_s_dsysv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
narray_t *na1, *na2;
size_t n, nb, nrhs;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
size_t shape[2];
ndfunc_arg_out_t aout[2] = {{cInt,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dsysv, NO_LOOP|NDF_EXTRACT, 2,2, ain,aout};
args_t g;
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
VALUE opts[2] = {Qundef,Qundef};
CHECK_FUNC(func_p,"dsysv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.order = option_order(opts[0]);
g.uplo = option_uplo(opts[1]);
COPY_OR_CAST_TO(a,cT);
COPY_OR_CAST_TO(b,cT);
GetNArray(a, na1);
GetNArray(b, na2);
CHECK_DIM_GE(na1, 2);
CHECK_DIM_GE(na2, 1);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
if (NA_NDIM(na2) == 1) {
ain[1].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col=a.row=%"SZF"u b.row=%"SZF"u", n, nb);
}
shape[0] = n;
shape[1] = nrhs;
#if !IPIV
ndf.aout++;
ndf.nout--;
#endif
ans = na_ndloop3(&ndf, &g, 2, a, b);
#if IPIV
return rb_ary_concat(rb_assoc_new(a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.dsytrf(a, [uplo: 'U', order:'R']) ⇒ [a, ipiv, info]
DSYTRF computes the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting method. The form of the factorization is
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. This is the blocked version of the algorithm, calling Level 3 BLAS.
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 5112
static VALUE
lapack_s_dsytrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,1,shape_piv},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dsytrf, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dsytrf");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.dsytri(a, ipiv, [uplo: 'U', order:'R']) ⇒ [a, info]
DSYTRI computes the inverse of a real symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by DSYTRF.
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 5357
static VALUE
lapack_s_dsytri(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dsytri, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dsytri");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.dsytrs(a, ipiv, b, [uplo: 'U', order:'R']) ⇒ [b, info]
DSYTRS solves a system of linear equations A*X = B with a real symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by DSYTRF.
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 5595
static VALUE
lapack_s_dsytrs(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dsytrs, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dsytrs");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.dtzrzf(a, [order: 'R']) ⇒ [a, tau, info]
DTZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A to upper triangular form by means of orthogonal transformations. The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N orthogonal matrix and R is an M-by-M upper triangular matrix.
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 |
# File 'ext/numo/linalg/lapack/lapack_d.c', line 4062
static VALUE
lapack_s_dtzrzf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_dtzrzf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"dtzrzf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.prefix=(prefix) ⇒ Object
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
# File 'ext/numo/linalg/lapack/lapack.c', line 385
static VALUE
lapack_s_prefix_set(VALUE mod, VALUE prefix)
{
long len;
if (TYPE(prefix) != T_STRING) {
rb_raise(rb_eTypeError,"argument must be string");
}
if (lapack_prefix) {
free(lapack_prefix);
}
len = RSTRING_LEN(prefix);
lapack_prefix = malloc(len+1);
strcpy(lapack_prefix, StringValueCStr(prefix));
return prefix;
}
|
.sgeev(a, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [wr, wi, vl, vr, info]
SGEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate-transpose of u(j). The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 2206
static VALUE
lapack_s_sgeev(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n;
narray_t *na1;
/**/
size_t shape[2];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[5-CZ] = {{cT,1,shape},{cT,1,shape},{cT,2,shape},{cT,2,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgeev, NO_LOOP|NDF_EXTRACT, 1, 5-CZ, ain, aout};
args_t g = {0,0,0};
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobvl,id_jobvr};
CHECK_FUNC(func_p,"sgeev");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobvl = option_job(opts[1],'V','N');
g.jobvr = option_job(opts[2],'V','N');
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
if (m != n) {
rb_raise(nary_eShapeError,"matrix must be square");
}
shape[0] = shape[1] = n;
if (g.jobvl=='N') { aout[2-CZ].dim = 0; }
if (g.jobvr=='N') { aout[3-CZ].dim = 0; }
ans = na_ndloop3(&ndf, &g, 1, a);
if (aout[3-CZ].dim == 0) { RARRAY_ASET(ans,3-CZ,Qnil); }
if (aout[2-CZ].dim == 0) { RARRAY_ASET(ans,2-CZ,Qnil); }
return ans;
}
|
.sgelqf(a, [order: 'R']) ⇒ [a, tau, info]
SGELQF computes an LQ factorization of a real M-by-N matrix A: A = L * Q.
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 3744
static VALUE
lapack_s_sgelqf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgelqf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"sgelqf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.sgels(a, b, trans: 'N', order: 'R') ⇒ [a, b, info]
SGELS solves overdetermined or underdetermined real linear systems involving an M-by-N matrix A, or its transpose, using a QR or LQ factorization of A. It is assumed that A has full rank. The following options are provided:
-
If TRANS = ‘N’ and m >= n: find the least squares solution of an overdetermined system, i.e., solve the least squares problem minimize || B - A*X ||.
-
If TRANS = ‘N’ and m < n: find the minimum norm solution of an underdetermined system A * X = B.
-
If TRANS = ‘T’ and m >= n: find the minimum norm solution of an underdetermined system A**T * X = B.
-
If TRANS = ‘T’ and m < n: find the least squares solution of an overdetermined system, i.e., solve the least squares problem minimize || B - A**T * X ||.
Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X.
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 1229
static VALUE
lapack_s_sgels(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgels, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"sgels");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.sgelsd(a, b, rcond: -1, order: 'R') ⇒ [b, s, rank, info]
SGELSD computes the minimum-norm solution to a real linear least squares problem:
minimize 2-norm(| b - A*x |)
using the singular value decomposition (SVD) of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The problem is solved in three steps:
(1) Reduce the coefficient matrix A to bidiagonal form with Householder transformations, reducing the original problem into a “bidiagonal least squares problem” (BLS)
(2) Solve the BLS using a divide and conquer approach.
(3) Apply back all the Householder transformations to solve the original least squares problem.
The effective rank of A is determined by treating as zero those singular values which are less than RCOND times the largest singular value. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 1711
static VALUE
lapack_s_sgelsd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2},{cInt,1}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cT,1,shape_s},{cInt,0},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgelsd, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"sgelsd");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.sgelss(a, b, rcond: -1, order: 'R') ⇒ [a, b, s, rank, info]
SGELSS computes the minimum norm solution to a real linear least squares problem: Minimize 2-norm(| b - A*x |). using the singular value decomposition (SVD) of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The effective rank of A is determined by treating as zero those singular values which are less than RCOND times the largest singular value.
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 1464
static VALUE
lapack_s_sgelss(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2},{cInt,1}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cT,1,shape_s},{cInt,0},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgelss, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"sgelss");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.sgelsy(a, b, jpvt, rcond: -1, order: 'R') ⇒ [a, b, jpvt, rank, info]
SGELSY computes the minimum-norm solution to a real linear least squares problem:
minimize || A * X - B ||
using a complete orthogonal factorization of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The routine first computes a QR factorization with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated condition number is less than 1/RCOND. The order of R11, RANK, is the effective rank of A. Then, R22 is considered to be negligible, and R12 is annihilated by orthogonal transformations from the right, arriving at the complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The minimum-norm solution is then
X = P * Z**T [ inv(T11)*Q1**T*B ]
[ 0 ]
where Q1 consists of the first RANK columns of Q. This routine is basically identical to the original xGELSX except three differences:
o The call to the subroutine xGEQPF has been substituted by the
the call to the subroutine xGEQP3. This subroutine is a Blas-3
version of the QR factorization with column pivoting.
o Matrix B (the right hand side) is updated with Blas-3.
o The permutation of matrix B (the right hand side) is faster and
more simple.
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 1973
static VALUE
lapack_s_sgelsy(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2},{cInt,1}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cT,1,shape_s},{cInt,0},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgelsy, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"sgelsy");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.sgeqlf(a, [order: 'R']) ⇒ [a, tau, info]
SGEQLF computes a QL factorization of a real M-by-N matrix A: A = Q * L.
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 3591
static VALUE
lapack_s_sgeqlf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgeqlf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"sgeqlf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.sgeqp3(a, jpvt, [order: 'R']) ⇒ [a, jpvt, tau, info]
SGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 3904
static VALUE
lapack_s_sgeqp3(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2},{OVERWRITE,1}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgeqp3, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"sgeqp3");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.sgeqrf(a, [order: 'R']) ⇒ [a, tau, info]
SGEQRF computes a QR factorization of a real M-by-N matrix A: A = Q * R.
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 3279
static VALUE
lapack_s_sgeqrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgeqrf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"sgeqrf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.sgerqf(a, [order: 'R']) ⇒ [a, tau, info]
SGERQF computes an RQ factorization of a real M-by-N matrix A: A = R * Q.
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 3435
static VALUE
lapack_s_sgerqf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgerqf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"sgerqf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.sgesdd(a, [jobz: 'A', order:'R']) ⇒ [sigma, u, vt, info]
SGESDD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and right singular vectors. If singular vectors are desired, it uses a divide-and-conquer algorithm. The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A. Note that the routine returns VT = V**T, not V. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 976
static VALUE
lapack_s_sgesdd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#if !SDD
VALUE tmpbuf;
#endif
VALUE a, ans;
int m, n, min_mn, tmp;
narray_t *na1;
size_t shape_s[1], shape_u[2], shape_vt[2];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[4] = {{cRT,1,shape_s},{cT,2,shape_u},
{cT,2,shape_vt},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgesdd, NO_LOOP|NDF_EXTRACT, 1, 4, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobu,id_jobvt,id_jobz};
CHECK_FUNC(func_p,"sgesdd");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
#if SDD
g.jobz = option_job(opts[3],'A','N');
g.jobu = g.jobvt = g.jobz;
#else
g.jobu = option_job(opts[1],'A','N');
g.jobvt = option_job(opts[2],'A','N');
if (g.jobu=='O' && g.jobvt=='O') {
rb_raise(rb_eArgError,"JOBVT and JOBU cannot both be 'O'");
}
#endif
if (g.jobu=='O' || g.jobvt=='O') {
if (CLASS_OF(a) != cT) {
rb_raise(rb_eTypeError,"type of matrix a is invalid for overwrite");
}
} else {
COPY_OR_CAST_TO(a,cT);
}
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if SDD
if (g.jobz=='O') {
if (m >= n) { g.jobvt='A';} else { g.jobu='A';}
}
#endif
// output S
shape_s[0] = min_mn = min_(m,n);
// output U
switch(g.jobu){
case 'A':
shape_u[0] = m;
shape_u[1] = m;
break;
case 'S':
shape_u[0] = m;
shape_u[1] = min_mn;
SWAP_IFCOL(g.order,shape_u[0],shape_u[1]);
break;
case 'O':
case 'N':
aout[1].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobu='%c'",g.jobu);
}
// output VT
switch(g.jobvt){
case 'A':
shape_vt[0] = n;
shape_vt[1] = n;
break;
case 'S':
shape_vt[0] = min_mn;
shape_vt[1] = n;
SWAP_IFCOL(g.order, shape_vt[0], shape_vt[1]);
break;
case 'O':
case 'N':
aout[2].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobvt='%c'",g.jobvt);
}
#if !SDD
g.superb = (rtype*)rb_alloc_tmp_buffer(&tmpbuf, min_mn*sizeof(rtype));
#endif
ans = na_ndloop3(&ndf, &g, 1, a);
#if !SDD
rb_free_tmp_buffer(&tmpbuf);
#endif
if (g.jobu=='O') { RARRAY_ASET(ans,1,a); } else
if (aout[1].dim == 0) { RARRAY_ASET(ans,1,Qnil); }
if (g.jobvt=='O') { RARRAY_ASET(ans,2,a); } else
if (aout[2].dim == 0) { RARRAY_ASET(ans,2,Qnil); }
return ans;
}
|
.sgesv(a, b, [order: 'R']) ⇒ [a, b, ipiv, info]
SGESV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices. The LU decomposition with partial pivoting and row interchanges is used to factor A as
A = P * L * U,
where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 256
static VALUE
lapack_s_sgesv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
narray_t *na1, *na2;
size_t n, nb, nrhs;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
size_t shape[2];
ndfunc_arg_out_t aout[2] = {{cInt,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgesv, NO_LOOP|NDF_EXTRACT, 2,2, ain,aout};
args_t g;
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
VALUE opts[2] = {Qundef,Qundef};
CHECK_FUNC(func_p,"sgesv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.order = option_order(opts[0]);
g.uplo = option_uplo(opts[1]);
COPY_OR_CAST_TO(a,cT);
COPY_OR_CAST_TO(b,cT);
GetNArray(a, na1);
GetNArray(b, na2);
CHECK_DIM_GE(na1, 2);
CHECK_DIM_GE(na2, 1);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
if (NA_NDIM(na2) == 1) {
ain[1].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col=a.row=%"SZF"u b.row=%"SZF"u", n, nb);
}
shape[0] = n;
shape[1] = nrhs;
#if !IPIV
ndf.aout++;
ndf.nout--;
#endif
ans = na_ndloop3(&ndf, &g, 2, a, b);
#if IPIV
return rb_ary_concat(rb_assoc_new(a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.sgesvd(a, [jobu: 'A', jobvt:'A', order:'R']) ⇒ [sigma, u, vt, info]
SGESVD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors. The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A. Note that the routine returns V**T, not V.
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 757
static VALUE
lapack_s_sgesvd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#if !SDD
VALUE tmpbuf;
#endif
VALUE a, ans;
int m, n, min_mn, tmp;
narray_t *na1;
size_t shape_s[1], shape_u[2], shape_vt[2];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[4] = {{cRT,1,shape_s},{cT,2,shape_u},
{cT,2,shape_vt},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgesvd, NO_LOOP|NDF_EXTRACT, 1, 4, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobu,id_jobvt,id_jobz};
CHECK_FUNC(func_p,"sgesvd");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
#if SDD
g.jobz = option_job(opts[3],'A','N');
g.jobu = g.jobvt = g.jobz;
#else
g.jobu = option_job(opts[1],'A','N');
g.jobvt = option_job(opts[2],'A','N');
if (g.jobu=='O' && g.jobvt=='O') {
rb_raise(rb_eArgError,"JOBVT and JOBU cannot both be 'O'");
}
#endif
if (g.jobu=='O' || g.jobvt=='O') {
if (CLASS_OF(a) != cT) {
rb_raise(rb_eTypeError,"type of matrix a is invalid for overwrite");
}
} else {
COPY_OR_CAST_TO(a,cT);
}
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if SDD
if (g.jobz=='O') {
if (m >= n) { g.jobvt='A';} else { g.jobu='A';}
}
#endif
// output S
shape_s[0] = min_mn = min_(m,n);
// output U
switch(g.jobu){
case 'A':
shape_u[0] = m;
shape_u[1] = m;
break;
case 'S':
shape_u[0] = m;
shape_u[1] = min_mn;
SWAP_IFCOL(g.order,shape_u[0],shape_u[1]);
break;
case 'O':
case 'N':
aout[1].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobu='%c'",g.jobu);
}
// output VT
switch(g.jobvt){
case 'A':
shape_vt[0] = n;
shape_vt[1] = n;
break;
case 'S':
shape_vt[0] = min_mn;
shape_vt[1] = n;
SWAP_IFCOL(g.order, shape_vt[0], shape_vt[1]);
break;
case 'O':
case 'N':
aout[2].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobvt='%c'",g.jobvt);
}
#if !SDD
g.superb = (rtype*)rb_alloc_tmp_buffer(&tmpbuf, min_mn*sizeof(rtype));
#endif
ans = na_ndloop3(&ndf, &g, 1, a);
#if !SDD
rb_free_tmp_buffer(&tmpbuf);
#endif
if (g.jobu=='O') { RARRAY_ASET(ans,1,a); } else
if (aout[1].dim == 0) { RARRAY_ASET(ans,1,Qnil); }
if (g.jobvt=='O') { RARRAY_ASET(ans,2,a); } else
if (aout[2].dim == 0) { RARRAY_ASET(ans,2,Qnil); }
return ans;
}
|
.sgetrf(a, [order: 'R']) ⇒ [a, ipiv, info]
SGETRF computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges. The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n). This is the right-looking Level 3 BLAS version of the algorithm.
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 4366
static VALUE
lapack_s_sgetrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,1,shape_piv},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgetrf, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"sgetrf");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.sgetri(a, ipiv, [order: 'R']) ⇒ [a, info]
SGETRI computes the inverse of a matrix using the LU factorization computed by SGETRF. This method inverts U and then computes inv(A) by solving the system inv(A)*L = inv(U) for inv(A).
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 4606
static VALUE
lapack_s_sgetri(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgetri, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"sgetri");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.sgetrs(a, ipiv, b, [trans: 'N', order:'R']) ⇒ [b, info]
SGETRS solves a system of linear equations
A * X = B or A**T * X = B
with a general N-by-N matrix A using the LU factorization computed by SGETRF.
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 4847
static VALUE
lapack_s_sgetrs(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sgetrs, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"sgetrs");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.sggev(a, b, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [alphar, alphai, beta, vl, vr, info]
SGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. A generalized eigenvalue for a pair of matrices (A,B) is a scalar lambda or a ratio alpha/beta = lambda, such that A - lambda*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. The right eigenvector v(j) corresponding to the eigenvalue lambda(j) of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j).
The left eigenvector u(j) corresponding to the eigenvalue lambda(j) of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B .
where u(j)**H is the conjugate-transpose of u(j).
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 2393
static VALUE
lapack_s_sggev(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb;
narray_t *na1, *na2;
/**/
size_t shape[2];
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[6-CZ] = {{cT,1,shape},{cT,1,shape},{cT,1,shape},{cT,2,shape},{cT,2,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sggev, NO_LOOP|NDF_EXTRACT, 2, 6-CZ, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobvl,id_jobvr};
CHECK_FUNC(func_p,"sggev");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobvl = option_job(opts[1],'V','N');
g.jobvr = option_job(opts[2],'V','N');
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b",na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError,"matrix a and b must have same size");
}
shape[0] = shape[1] = n;
if (g.jobvl=='N') { aout[3-CZ].dim = 0; }
if (g.jobvr=='N') { aout[4-CZ].dim = 0; }
ans = na_ndloop3(&ndf, &g, 2, a, b);
if (aout[4-CZ].dim == 0) { RARRAY_ASET(ans,4-CZ,Qnil); }
if (aout[3-CZ].dim == 0) { RARRAY_ASET(ans,3-CZ,Qnil); }
return ans;
}
|
.slange(a, norm, [order: 'R']) ⇒ Numo::SFloat
SLANGE returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real matrix A.
SLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 125
static VALUE
lapack_s_slange(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, norm, ans;
narray_t *na1;
ndfunc_arg_in_t ain[1] = {{cT,2}};
ndfunc_arg_out_t aout[1] = {{cRT,0}};
ndfunc_t ndf = {&iter_lapack_s_slange, NO_LOOP|NDF_EXTRACT, 1, 1, ain, aout};
args_t g;
VALUE opts[1] = {Qundef};
ID kw_table[1] = {id_order};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"slange");
rb_scan_args(argc, argv, "2:", &a, &norm, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
g.order = option_order(opts[0]);
g.norm = option_job(norm,'F','F');
//reduce = nary_reduce_options(Qnil, &opts[1], 1, &a, &ndf);
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
//COPY_OR_CAST_TO(a,cT); // not overwrite
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
ans = na_ndloop3(&ndf, &g, 1, a);
return ans;
}
|
.sorgqr(a, tau, order: 'R') ⇒ [a, info]
SORGQR generates an M-by-N real matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M
Q = H(1) H(2) . . . H(k)
as returned by SGEQRF.
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 4198
static VALUE
lapack_s_sorgqr(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, tau, ans;
int m, n, k, tmp;
narray_t *na1, *na2;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cT,1}};
ndfunc_arg_out_t aout[1] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sorgqr, NO_LOOP|NDF_EXTRACT, 2,1, ain,aout};
args_t g = {0};
VALUE opts[1] = {Qundef};
VALUE kw_hash = Qnil;
ID kw_table[1] = {id_order};
CHECK_FUNC(func_p,"sorgqr");
rb_scan_args(argc, argv, "2:", &a, &tau, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
g.order = option_order(opts[0]);
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
GetNArray(tau, na2);
CHECK_DIM_GE(na2, 1);
k = COL_SIZE(na2);
if (m < n) {
rb_raise(nary_eShapeError,
"a row length (m) must be >= a column length (n): m=%d n=%d",
m,n);
}
if (n < k) {
rb_raise(nary_eShapeError,
"a column length (n) must be >= tau length (k): n=%d, k=%d",
k,n);
}
SWAP_IFCOL(g.order,m,n);
ans = na_ndloop3(&ndf, &g, 2, a, tau);
return rb_assoc_new(a, ans);
}
|
.sposv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, info]
SPOSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix and X and B are N-by-NRHS matrices. The Cholesky decomposition is used to factor A as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations A * X = B.
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 597
static VALUE
lapack_s_sposv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
narray_t *na1, *na2;
size_t n, nb, nrhs;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
size_t shape[2];
ndfunc_arg_out_t aout[2] = {{cInt,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_sposv, NO_LOOP|NDF_EXTRACT, 2,2, ain,aout};
args_t g;
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
VALUE opts[2] = {Qundef,Qundef};
CHECK_FUNC(func_p,"sposv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.order = option_order(opts[0]);
g.uplo = option_uplo(opts[1]);
COPY_OR_CAST_TO(a,cT);
COPY_OR_CAST_TO(b,cT);
GetNArray(a, na1);
GetNArray(b, na2);
CHECK_DIM_GE(na1, 2);
CHECK_DIM_GE(na2, 1);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
if (NA_NDIM(na2) == 1) {
ain[1].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col=a.row=%"SZF"u b.row=%"SZF"u", n, nb);
}
shape[0] = n;
shape[1] = nrhs;
#if !IPIV
ndf.aout++;
ndf.nout--;
#endif
ans = na_ndloop3(&ndf, &g, 2, a, b);
#if IPIV
return rb_ary_concat(rb_assoc_new(a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.spotrf(a, [uplo: 'U', order:'R']) ⇒ [a, info]
SPOTRF computes the Cholesky factorization of a real symmetric positive definite matrix A. The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular. This is the block version of the algorithm, calling Level 3 BLAS.
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 5847
static VALUE
lapack_s_spotrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_spotrf, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"spotrf");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.spotri(a, [uplo: 'U', order:'R']) ⇒ [a, info]
SPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF.
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 6088
static VALUE
lapack_s_spotri(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_spotri, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"spotri");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.spotrs(a, b, [uplo: 'U', order:'R']) ⇒ [b, info]
SPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF.
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 6325
static VALUE
lapack_s_spotrs(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_spotrs, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"spotrs");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.ssyev(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
SSYEV computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 2519
static VALUE
lapack_s_ssyev(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n;
narray_t *na1;
size_t shape[1];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_ssyev, NO_LOOP|NDF_EXTRACT, 1, 2, ain, aout};
args_t g = {0,0,0};
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobz,id_uplo};
CHECK_FUNC(func_p,"ssyev");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
if (m != n) {
rb_raise(nary_eShapeError,"matrix must be square");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 1, a);
return rb_ary_new3(3, a, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.ssyevd(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
SSYEVD computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Because of large use of BLAS of level 3, SSYEVD needs N**2 more workspace than SSYEVX.
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 2646
static VALUE
lapack_s_ssyevd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n;
narray_t *na1;
size_t shape[1];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_ssyevd, NO_LOOP|NDF_EXTRACT, 1, 2, ain, aout};
args_t g = {0,0,0};
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobz,id_uplo};
CHECK_FUNC(func_p,"ssyevd");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
if (m != n) {
rb_raise(nary_eShapeError,"matrix must be square");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 1, a);
return rb_ary_new3(3, a, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.ssygv(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
SSYGV computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite.
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 2787
static VALUE
lapack_s_ssygv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb;
narray_t *na1, *na2;
size_t shape[1];
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_ssygv, NO_LOOP|NDF_EXTRACT, 2, 2, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobz,id_uplo,id_itype};
CHECK_FUNC(func_p,"ssygv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
g.itype = NUM2INT(option_value(opts[3],INT2FIX(1)));
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b",na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError,"matrix a and b must have same size");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_ary_new3(4, a, b, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.ssygvd(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
SSYGVD computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 2947
static VALUE
lapack_s_ssygvd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb;
narray_t *na1, *na2;
size_t shape[1];
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_ssygvd, NO_LOOP|NDF_EXTRACT, 2, 2, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobz,id_uplo,id_itype};
CHECK_FUNC(func_p,"ssygvd");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
g.itype = NUM2INT(option_value(opts[3],INT2FIX(1)));
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b",na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError,"matrix a and b must have same size");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_ary_new3(4, a, b, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.ssygvx(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R', range:'I', il: 1, il: 2]) ⇒ [a, b, w, z, ifail, info]
SSYGVX computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 3133
static VALUE
lapack_s_ssygvx(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb, m;
narray_t *na1, *na2;
size_t w_shape[1];
size_t z_shape[2];
size_t ifail_shape[1];
ndfunc_arg_in_t ain[2] = {{OVERWRITE, 2}, {OVERWRITE, 2}};
ndfunc_arg_out_t aout[4] = {{cRT, 1, w_shape}, {cT, 2, z_shape}, {cI, 1, ifail_shape}, {cInt, 0}};
ndfunc_t ndf = {&iter_lapack_s_ssygvx, NO_LOOP | NDF_EXTRACT, 2, 4, ain, aout};
args_t g;
VALUE opts[7] = {Qundef, Qundef, Qundef, Qundef, Qundef, Qundef, Qundef};
VALUE kw_hash = Qnil;
ID kw_table[7] = {id_order, id_jobz, id_uplo, id_itype, id_range, id_il, id_iu};
CHECK_FUNC(func_p,"ssygvx");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 7, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1], 'V', 'N');
g.uplo = option_uplo(opts[2]);
g.itype = NUM2INT(option_value(opts[3], INT2FIX(1)));
g.range = option_range(opts[4], 'A', 'I');
g.il = NUM2INT(option_value(opts[5], INT2FIX(1)));
g.iu = NUM2INT(option_value(opts[6], INT2FIX(1)));
COPY_OR_CAST_TO(a, cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b, cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a", na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b", na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError, "matrix a and b must have same size");
}
m = g.range == 'I' ? g.iu - g.il + 1 : n;
w_shape[0] = m;
z_shape[0] = n;
z_shape[1] = m;
ifail_shape[0] = m;
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_ary_new3(6, a, b, RARRAY_AREF(ans, 0), RARRAY_AREF(ans, 1), RARRAY_AREF(ans, 2), RARRAY_AREF(ans, 3));
}
|
.ssysv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, ipiv, info]
SSYSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. The diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B.
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 434
static VALUE
lapack_s_ssysv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
narray_t *na1, *na2;
size_t n, nb, nrhs;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
size_t shape[2];
ndfunc_arg_out_t aout[2] = {{cInt,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_ssysv, NO_LOOP|NDF_EXTRACT, 2,2, ain,aout};
args_t g;
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
VALUE opts[2] = {Qundef,Qundef};
CHECK_FUNC(func_p,"ssysv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.order = option_order(opts[0]);
g.uplo = option_uplo(opts[1]);
COPY_OR_CAST_TO(a,cT);
COPY_OR_CAST_TO(b,cT);
GetNArray(a, na1);
GetNArray(b, na2);
CHECK_DIM_GE(na1, 2);
CHECK_DIM_GE(na2, 1);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
if (NA_NDIM(na2) == 1) {
ain[1].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col=a.row=%"SZF"u b.row=%"SZF"u", n, nb);
}
shape[0] = n;
shape[1] = nrhs;
#if !IPIV
ndf.aout++;
ndf.nout--;
#endif
ans = na_ndloop3(&ndf, &g, 2, a, b);
#if IPIV
return rb_ary_concat(rb_assoc_new(a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.ssytrf(a, [uplo: 'U', order:'R']) ⇒ [a, ipiv, info]
SSYTRF computes the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting method. The form of the factorization is
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. This is the blocked version of the algorithm, calling Level 3 BLAS.
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 5112
static VALUE
lapack_s_ssytrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,1,shape_piv},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_ssytrf, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"ssytrf");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.ssytri(a, ipiv, [uplo: 'U', order:'R']) ⇒ [a, info]
SSYTRI computes the inverse of a real symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by SSYTRF.
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 5357
static VALUE
lapack_s_ssytri(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_ssytri, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"ssytri");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.ssytrs(a, ipiv, b, [uplo: 'U', order:'R']) ⇒ [b, info]
SSYTRS solves a system of linear equations A*X = B with a real symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by SSYTRF.
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 5595
static VALUE
lapack_s_ssytrs(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_ssytrs, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"ssytrs");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.stzrzf(a, [order: 'R']) ⇒ [a, tau, info]
STZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A to upper triangular form by means of orthogonal transformations. The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N orthogonal matrix and R is an M-by-M upper triangular matrix.
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 |
# File 'ext/numo/linalg/lapack/lapack_s.c', line 4062
static VALUE
lapack_s_stzrzf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_stzrzf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"stzrzf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.zgeev(a, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [w, vl, vr, info]
ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue. The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j). The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 2364
static VALUE
lapack_s_zgeev(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n;
narray_t *na1;
/**/
size_t shape[2];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[5-CZ] = {{cT,1,shape},{cT,2,shape},{cT,2,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgeev, NO_LOOP|NDF_EXTRACT, 1, 5-CZ, ain, aout};
args_t g = {0,0,0};
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobvl,id_jobvr};
CHECK_FUNC(func_p,"zgeev");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobvl = option_job(opts[1],'V','N');
g.jobvr = option_job(opts[2],'V','N');
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
if (m != n) {
rb_raise(nary_eShapeError,"matrix must be square");
}
shape[0] = shape[1] = n;
if (g.jobvl=='N') { aout[2-CZ].dim = 0; }
if (g.jobvr=='N') { aout[3-CZ].dim = 0; }
ans = na_ndloop3(&ndf, &g, 1, a);
if (aout[3-CZ].dim == 0) { RARRAY_ASET(ans,3-CZ,Qnil); }
if (aout[2-CZ].dim == 0) { RARRAY_ASET(ans,2-CZ,Qnil); }
return ans;
}
|
.zgelqf(a, [order: 'R']) ⇒ [a, tau, info]
ZGELQF computes an LQ factorization of a complex M-by-N matrix A: A = L * Q.
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 3888
static VALUE
lapack_s_zgelqf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgelqf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zgelqf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.zgels(a, b, trans: 'N', order: 'R') ⇒ [a, b, info]
ZGELS solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose, using a QR or LQ factorization of A. It is assumed that A has full rank. The following options are provided:
-
If TRANS = ‘N’ and m >= n: find the least squares solution of an overdetermined system, i.e., solve the least squares problem minimize || B - A*X ||.
-
If TRANS = ‘N’ and m < n: find the minimum norm solution of an underdetermined system A * X = B.
-
If TRANS = ‘C’ and m >= n: find the minimum norm solution of an underdetermined system A**H * X = B.
-
If TRANS = ‘C’ and m < n: find the least squares solution of an overdetermined system, i.e., solve the least squares problem minimize || B - A**H * X ||.
Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X.
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 1402
static VALUE
lapack_s_zgels(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgels, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"zgels");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.zgelsd(a, b, rcond: -1, order: 'R') ⇒ [b, s, rank, info]
ZGELSD computes the minimum-norm solution to a real linear least squares problem:
minimize 2-norm(| b - A*x |)
using the singular value decomposition (SVD) of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The problem is solved in three steps:
(1) Reduce the coefficient matrix A to bidiagonal form with Householder transformations, reducing the original problem into a “bidiagonal least squares problem” (BLS)
(2) Solve the BLS using a divide and conquer approach.
(3) Apply back all the Householder transformations to solve the original least squares problem.
The effective rank of A is determined by treating as zero those singular values which are less than RCOND times the largest singular value. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 1884
static VALUE
lapack_s_zgelsd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2},{cInt,1}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cT,1,shape_s},{cInt,0},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgelsd, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"zgelsd");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.zgelss(a, b, rcond: -1, order: 'R') ⇒ [a, b, s, rank, info]
ZGELSS computes the minimum norm solution to a complex linear least squares problem: Minimize 2-norm(| b - A*x |). using the singular value decomposition (SVD) of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The effective rank of A is determined by treating as zero those singular values which are less than RCOND times the largest singular value.
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 1637
static VALUE
lapack_s_zgelss(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2},{cInt,1}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cT,1,shape_s},{cInt,0},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgelss, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"zgelss");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.zgelsy(a, b, jpvt, rcond: -1, order: 'R') ⇒ [a, b, jpvt, rank, info]
ZGELSY computes the minimum-norm solution to a complex linear least squares problem:
minimize || A * X - B ||
using a complete orthogonal factorization of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The routine first computes a QR factorization with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated condition number is less than 1/RCOND. The order of R11, RANK, is the effective rank of A. Then, R22 is considered to be negligible, and R12 is annihilated by unitary transformations from the right, arriving at the complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The minimum-norm solution is then
X = P * Z**H [ inv(T11)*Q1**H*B ]
[ 0 ]
where Q1 consists of the first RANK columns of Q. This routine is basically identical to the original xGELSX except three differences:
o The permutation of matrix B (the right hand side) is faster and
more simple.
o The call to the subroutine xGEQPF has been substituted by the
the call to the subroutine xGEQP3. This subroutine is a Blas-3
version of the QR factorization with column pivoting.
o Matrix B (the right hand side) is updated with Blas-3.
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 2146
static VALUE
lapack_s_zgelsy(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int m, n, nb, nrhs, tmp;
int max_mn;
narray_t *na1, *na2;
#if LSY
narray_t *na3;
VALUE jpvt;
#endif
#if LSS
size_t shape_s[1];
#endif
/**/
ndfunc_arg_in_t ain[2+LSS] = {{OVERWRITE,2},{OVERWRITE,2},{cInt,1}};
ndfunc_arg_out_t aout[1+LSS*2] = {{cT,1,shape_s},{cInt,0},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgelsy, NO_LOOP|NDF_EXTRACT, 2, 1+LSS*2, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
ID kw_table[3] = {id_order,id_trans,id_rcond};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"zgelsy");
#if LSY
rb_scan_args(argc, argv, "3:", &a, &b, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
#if LSS
g.rcond = NUM2DBL(option_value(opts[2],DBL2NUM(-1)));
#else
g.trans = option_trans(opts[1]);
#endif
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
//B is DOUBLE PRECISION array, dimension (LDB,NRHS)
//B is M-by-NRHS if TRANS = 'N'
// N-by-NRHS if TRANS = 'T'
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
//The number of rows of the matrix A.
m = ROW_SIZE(na1);
//The number of columns of the matrix A.
n = COL_SIZE(na1);
max_mn = (m > n) ? m : n;
SWAP_IFCOL(g.order,m,n);
#if LSY
ndf.nin++;
ndf.nout--;
ndf.aout++;
COPY_OR_CAST_TO(jpvt,cInt);
GetNArray(jpvt, na3);
CHECK_DIM_GE(na3, 1);
{ int jpvt_sz = COL_SIZE(na3);
CHECK_INT_EQ("jpvt_size",jpvt_sz,"n",n);
}
#elif LSS
shape_s[0] = (m < n) ? m : n;
#endif
//The number of columns of the matrix B.
if (na2->ndim == 1) {
ain[1].dim = 1; // reduce dimension
nb = COL_SIZE(na2);
nrhs = 1;
} else {
//The number of rows of the matrix B.
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
SWAP_IFCOL(g.order,nb,nrhs);
}
if (nb < max_mn) {
rb_raise(nary_eShapeError,
"ldb should be >= max(m,n): ldb=%d m=%d n=%d",nb,m,n);
}
// ndloop
#if LSY
ans = na_ndloop3(&ndf, &g, 3, a, b, jpvt);
#else
ans = na_ndloop3(&ndf, &g, 2, a, b);
#endif
// return
#if LSY
return rb_ary_concat(rb_ary_new3(3,a,b,jpvt),ans);
#elif LSD
rb_ary_unshift(ans,b); return ans;
#elif LSS
return rb_ary_concat(rb_ary_new3(2,a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.zgeqlf(a, [order: 'R']) ⇒ [a, tau, info]
ZGEQLF computes a QL factorization of a complex M-by-N matrix A: A = Q * L.
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 3735
static VALUE
lapack_s_zgeqlf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgeqlf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zgeqlf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.zgeqp3(a, jpvt, [order: 'R']) ⇒ [a, jpvt, tau, info]
ZGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 4048
static VALUE
lapack_s_zgeqp3(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2},{OVERWRITE,1}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgeqp3, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zgeqp3");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.zgeqrf(a, [order: 'R']) ⇒ [a, tau, info]
ZGEQRF computes a QR factorization of a complex M-by-N matrix A: A = Q * R.
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 3423
static VALUE
lapack_s_zgeqrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgeqrf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zgeqrf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.zgerqf(a, [order: 'R']) ⇒ [a, tau, info]
ZGERQF computes an RQ factorization of a complex M-by-N matrix A: A = R * Q.
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 3579
static VALUE
lapack_s_zgerqf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgerqf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zgerqf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.zgesdd(a, [jobz: 'A', order:'R']) ⇒ [sigma, u, vt, info]
ZGESDD computes the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally computing the left and/or right singular vectors, by using divide-and-conquer method. The SVD is written
A = U * SIGMA * conjugate-transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M unitary matrix, and V is an N-by-N unitary matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A. Note that the routine returns VT = V**H, not V. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 1150
static VALUE
lapack_s_zgesdd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#if !SDD
VALUE tmpbuf;
#endif
VALUE a, ans;
int m, n, min_mn, tmp;
narray_t *na1;
size_t shape_s[1], shape_u[2], shape_vt[2];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[4] = {{cRT,1,shape_s},{cT,2,shape_u},
{cT,2,shape_vt},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgesdd, NO_LOOP|NDF_EXTRACT, 1, 4, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobu,id_jobvt,id_jobz};
CHECK_FUNC(func_p,"zgesdd");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
#if SDD
g.jobz = option_job(opts[3],'A','N');
g.jobu = g.jobvt = g.jobz;
#else
g.jobu = option_job(opts[1],'A','N');
g.jobvt = option_job(opts[2],'A','N');
if (g.jobu=='O' && g.jobvt=='O') {
rb_raise(rb_eArgError,"JOBVT and JOBU cannot both be 'O'");
}
#endif
if (g.jobu=='O' || g.jobvt=='O') {
if (CLASS_OF(a) != cT) {
rb_raise(rb_eTypeError,"type of matrix a is invalid for overwrite");
}
} else {
COPY_OR_CAST_TO(a,cT);
}
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if SDD
if (g.jobz=='O') {
if (m >= n) { g.jobvt='A';} else { g.jobu='A';}
}
#endif
// output S
shape_s[0] = min_mn = min_(m,n);
// output U
switch(g.jobu){
case 'A':
shape_u[0] = m;
shape_u[1] = m;
break;
case 'S':
shape_u[0] = m;
shape_u[1] = min_mn;
SWAP_IFCOL(g.order,shape_u[0],shape_u[1]);
break;
case 'O':
case 'N':
aout[1].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobu='%c'",g.jobu);
}
// output VT
switch(g.jobvt){
case 'A':
shape_vt[0] = n;
shape_vt[1] = n;
break;
case 'S':
shape_vt[0] = min_mn;
shape_vt[1] = n;
SWAP_IFCOL(g.order, shape_vt[0], shape_vt[1]);
break;
case 'O':
case 'N':
aout[2].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobvt='%c'",g.jobvt);
}
#if !SDD
g.superb = (rtype*)rb_alloc_tmp_buffer(&tmpbuf, min_mn*sizeof(rtype));
#endif
ans = na_ndloop3(&ndf, &g, 1, a);
#if !SDD
rb_free_tmp_buffer(&tmpbuf);
#endif
if (g.jobu=='O') { RARRAY_ASET(ans,1,a); } else
if (aout[1].dim == 0) { RARRAY_ASET(ans,1,Qnil); }
if (g.jobvt=='O') { RARRAY_ASET(ans,2,a); } else
if (aout[2].dim == 0) { RARRAY_ASET(ans,2,Qnil); }
return ans;
}
|
.zgesv(a, b, [order: 'R']) ⇒ [a, b, ipiv, info]
ZGESV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices. The LU decomposition with partial pivoting and row interchanges is used to factor A as
A = P * L * U,
where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 254
static VALUE
lapack_s_zgesv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
narray_t *na1, *na2;
size_t n, nb, nrhs;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
size_t shape[2];
ndfunc_arg_out_t aout[2] = {{cInt,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgesv, NO_LOOP|NDF_EXTRACT, 2,2, ain,aout};
args_t g;
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
VALUE opts[2] = {Qundef,Qundef};
CHECK_FUNC(func_p,"zgesv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.order = option_order(opts[0]);
g.uplo = option_uplo(opts[1]);
COPY_OR_CAST_TO(a,cT);
COPY_OR_CAST_TO(b,cT);
GetNArray(a, na1);
GetNArray(b, na2);
CHECK_DIM_GE(na1, 2);
CHECK_DIM_GE(na2, 1);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
if (NA_NDIM(na2) == 1) {
ain[1].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col=a.row=%"SZF"u b.row=%"SZF"u", n, nb);
}
shape[0] = n;
shape[1] = nrhs;
#if !IPIV
ndf.aout++;
ndf.nout--;
#endif
ans = na_ndloop3(&ndf, &g, 2, a, b);
#if IPIV
return rb_ary_concat(rb_assoc_new(a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.zgesvd(a, [jobu: 'A', jobvt:'A', order:'R']) ⇒ [sigma, u, vt, info]
ZGESVD computes the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally computing the left and/or right singular vectors. The SVD is written
A = U * SIGMA * conjugate-transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M unitary matrix, and V is an N-by-N unitary matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A. Note that the routine returns V**H, not V.
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 933
static VALUE
lapack_s_zgesvd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#if !SDD
VALUE tmpbuf;
#endif
VALUE a, ans;
int m, n, min_mn, tmp;
narray_t *na1;
size_t shape_s[1], shape_u[2], shape_vt[2];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[4] = {{cRT,1,shape_s},{cT,2,shape_u},
{cT,2,shape_vt},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgesvd, NO_LOOP|NDF_EXTRACT, 1, 4, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobu,id_jobvt,id_jobz};
CHECK_FUNC(func_p,"zgesvd");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
#if SDD
g.jobz = option_job(opts[3],'A','N');
g.jobu = g.jobvt = g.jobz;
#else
g.jobu = option_job(opts[1],'A','N');
g.jobvt = option_job(opts[2],'A','N');
if (g.jobu=='O' && g.jobvt=='O') {
rb_raise(rb_eArgError,"JOBVT and JOBU cannot both be 'O'");
}
#endif
if (g.jobu=='O' || g.jobvt=='O') {
if (CLASS_OF(a) != cT) {
rb_raise(rb_eTypeError,"type of matrix a is invalid for overwrite");
}
} else {
COPY_OR_CAST_TO(a,cT);
}
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if SDD
if (g.jobz=='O') {
if (m >= n) { g.jobvt='A';} else { g.jobu='A';}
}
#endif
// output S
shape_s[0] = min_mn = min_(m,n);
// output U
switch(g.jobu){
case 'A':
shape_u[0] = m;
shape_u[1] = m;
break;
case 'S':
shape_u[0] = m;
shape_u[1] = min_mn;
SWAP_IFCOL(g.order,shape_u[0],shape_u[1]);
break;
case 'O':
case 'N':
aout[1].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobu='%c'",g.jobu);
}
// output VT
switch(g.jobvt){
case 'A':
shape_vt[0] = n;
shape_vt[1] = n;
break;
case 'S':
shape_vt[0] = min_mn;
shape_vt[1] = n;
SWAP_IFCOL(g.order, shape_vt[0], shape_vt[1]);
break;
case 'O':
case 'N':
aout[2].dim = 0; // dummy
break;
default:
rb_raise(rb_eArgError,"invalid option: jobvt='%c'",g.jobvt);
}
#if !SDD
g.superb = (rtype*)rb_alloc_tmp_buffer(&tmpbuf, min_mn*sizeof(rtype));
#endif
ans = na_ndloop3(&ndf, &g, 1, a);
#if !SDD
rb_free_tmp_buffer(&tmpbuf);
#endif
if (g.jobu=='O') { RARRAY_ASET(ans,1,a); } else
if (aout[1].dim == 0) { RARRAY_ASET(ans,1,Qnil); }
if (g.jobvt=='O') { RARRAY_ASET(ans,2,a); } else
if (aout[2].dim == 0) { RARRAY_ASET(ans,2,Qnil); }
return ans;
}
|
.zgetrf(a, [order: 'R']) ⇒ [a, ipiv, info]
ZGETRF computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges. The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n). This is the right-looking Level 3 BLAS version of the algorithm.
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 4510
static VALUE
lapack_s_zgetrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,1,shape_piv},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgetrf, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zgetrf");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.zgetri(a, ipiv, [order: 'R']) ⇒ [a, info]
ZGETRI computes the inverse of a matrix using the LU factorization computed by ZGETRF. This method inverts U and then computes inv(A) by solving the system inv(A)*L = inv(U) for inv(A).
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 4750
static VALUE
lapack_s_zgetri(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgetri, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zgetri");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.zgetrs(a, ipiv, b, [trans: 'N', order:'R']) ⇒ [b, info]
ZGETRS solves a system of linear equations
A * X = B, A**T * X = B, or A**H * X = B
with a general N-by-N matrix A using the LU factorization computed by ZGETRF.
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 4991
static VALUE
lapack_s_zgetrs(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zgetrs, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zgetrs");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.zggev(a, b, [jobvl: 'V', jobvr:'V', order:'R']) ⇒ [alpha, beta, vl, vr, info]
ZGGEV computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. A generalized eigenvalue for a pair of matrices (A,B) is a scalar lambda or a ratio alpha/beta = lambda, such that A - lambda*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. The right generalized eigenvector v(j) corresponding to the generalized eigenvalue lambda(j) of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j).
The left generalized eigenvector u(j) corresponding to the generalized eigenvalues lambda(j) of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B
where u(j)**H is the conjugate-transpose of u(j).
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 2539
static VALUE
lapack_s_zggev(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb;
narray_t *na1, *na2;
/**/
size_t shape[2];
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[6-CZ] = {{cT,1,shape},{cT,1,shape},{cT,2,shape},{cT,2,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zggev, NO_LOOP|NDF_EXTRACT, 2, 6-CZ, ain, aout};
args_t g;
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobvl,id_jobvr};
CHECK_FUNC(func_p,"zggev");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobvl = option_job(opts[1],'V','N');
g.jobvr = option_job(opts[2],'V','N');
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b",na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError,"matrix a and b must have same size");
}
shape[0] = shape[1] = n;
if (g.jobvl=='N') { aout[3-CZ].dim = 0; }
if (g.jobvr=='N') { aout[4-CZ].dim = 0; }
ans = na_ndloop3(&ndf, &g, 2, a, b);
if (aout[4-CZ].dim == 0) { RARRAY_ASET(ans,4-CZ,Qnil); }
if (aout[3-CZ].dim == 0) { RARRAY_ASET(ans,3-CZ,Qnil); }
return ans;
}
|
.zheev(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
ZHEEV computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A.
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 2665
static VALUE
lapack_s_zheev(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n;
narray_t *na1;
size_t shape[1];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zheev, NO_LOOP|NDF_EXTRACT, 1, 2, ain, aout};
args_t g = {0,0,0};
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobz,id_uplo};
CHECK_FUNC(func_p,"zheev");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
if (m != n) {
rb_raise(nary_eShapeError,"matrix must be square");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 1, a);
return rb_ary_new3(3, a, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.zheevd(a, [jobz: 'V', uplo:'U', order:'R']) ⇒ [a, w, info]
ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 2790
static VALUE
lapack_s_zheevd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n;
narray_t *na1;
size_t shape[1];
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zheevd, NO_LOOP|NDF_EXTRACT, 1, 2, ain, aout};
args_t g = {0,0,0};
VALUE opts[3] = {Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[3] = {id_order,id_jobz,id_uplo};
CHECK_FUNC(func_p,"zheevd");
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
if (m != n) {
rb_raise(nary_eShapeError,"matrix must be square");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 1, a);
return rb_ary_new3(3, a, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.zhegv(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
ZHEGV computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian and B is also positive definite.
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 2931
static VALUE
lapack_s_zhegv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb;
narray_t *na1, *na2;
size_t shape[1];
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zhegv, NO_LOOP|NDF_EXTRACT, 2, 2, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobz,id_uplo,id_itype};
CHECK_FUNC(func_p,"zhegv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
g.itype = NUM2INT(option_value(opts[3],INT2FIX(1)));
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b",na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError,"matrix a and b must have same size");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_ary_new3(4, a, b, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.zhegvd(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R']) ⇒ [a, b, w, info]
ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 3091
static VALUE
lapack_s_zhegvd(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb;
narray_t *na1, *na2;
size_t shape[1];
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
ndfunc_arg_out_t aout[2] = {{cRT,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zhegvd, NO_LOOP|NDF_EXTRACT, 2, 2, ain, aout};
args_t g;
VALUE opts[4] = {Qundef,Qundef,Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[4] = {id_order,id_jobz,id_uplo,id_itype};
CHECK_FUNC(func_p,"zhegvd");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1],'V','N');
g.uplo = option_uplo(opts[2]);
g.itype = NUM2INT(option_value(opts[3],INT2FIX(1)));
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b",na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError,"matrix a and b must have same size");
}
shape[0] = n;
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_ary_new3(4, a, b, RARRAY_AREF(ans,0), RARRAY_AREF(ans,1));
}
|
.zhegvx(a, b, [itype: 1, jobz:'V', uplo:'U', order:'R', range:'I', il: 1, il: 2]) ⇒ [a, b, w, z, ifail, info]
ZHEGVX computes selected eigenvalues, and optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 3277
static VALUE
lapack_s_zhegvx(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
int n, nb, m;
narray_t *na1, *na2;
size_t w_shape[1];
size_t z_shape[2];
size_t ifail_shape[1];
ndfunc_arg_in_t ain[2] = {{OVERWRITE, 2}, {OVERWRITE, 2}};
ndfunc_arg_out_t aout[4] = {{cRT, 1, w_shape}, {cT, 2, z_shape}, {cI, 1, ifail_shape}, {cInt, 0}};
ndfunc_t ndf = {&iter_lapack_s_zhegvx, NO_LOOP | NDF_EXTRACT, 2, 4, ain, aout};
args_t g;
VALUE opts[7] = {Qundef, Qundef, Qundef, Qundef, Qundef, Qundef, Qundef};
VALUE kw_hash = Qnil;
ID kw_table[7] = {id_order, id_jobz, id_uplo, id_itype, id_range, id_il, id_iu};
CHECK_FUNC(func_p,"zhegvx");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 7, opts);
g.order = option_order(opts[0]);
g.jobz = option_job(opts[1], 'V', 'N');
g.uplo = option_uplo(opts[2]);
g.itype = NUM2INT(option_value(opts[3], INT2FIX(1)));
g.range = option_range(opts[4], 'A', 'I');
g.il = NUM2INT(option_value(opts[5], INT2FIX(1)));
g.iu = NUM2INT(option_value(opts[6], INT2FIX(1)));
COPY_OR_CAST_TO(a, cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
COPY_OR_CAST_TO(b, cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 2);
CHECK_SQUARE("matrix a", na1);
n = COL_SIZE(na1);
CHECK_SQUARE("matrix b", na2);
nb = COL_SIZE(na2);
if (n != nb) {
rb_raise(nary_eShapeError, "matrix a and b must have same size");
}
m = g.range == 'I' ? g.iu - g.il + 1 : n;
w_shape[0] = m;
z_shape[0] = n;
z_shape[1] = m;
ifail_shape[0] = m;
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_ary_new3(6, a, b, RARRAY_AREF(ans, 0), RARRAY_AREF(ans, 1), RARRAY_AREF(ans, 2), RARRAY_AREF(ans, 3));
}
|
.zhesv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, ipiv, info]
ZHESV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS matrices. The diagonal pivoting method is used to factor A as
A = U * D * U**H, if UPLO = 'U', or
A = L * D * L**H, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B.
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 773
static VALUE
lapack_s_zhesv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
narray_t *na1, *na2;
size_t n, nb, nrhs;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
size_t shape[2];
ndfunc_arg_out_t aout[2] = {{cInt,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zhesv, NO_LOOP|NDF_EXTRACT, 2,2, ain,aout};
args_t g;
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
VALUE opts[2] = {Qundef,Qundef};
CHECK_FUNC(func_p,"zhesv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.order = option_order(opts[0]);
g.uplo = option_uplo(opts[1]);
COPY_OR_CAST_TO(a,cT);
COPY_OR_CAST_TO(b,cT);
GetNArray(a, na1);
GetNArray(b, na2);
CHECK_DIM_GE(na1, 2);
CHECK_DIM_GE(na2, 1);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
if (NA_NDIM(na2) == 1) {
ain[1].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col=a.row=%"SZF"u b.row=%"SZF"u", n, nb);
}
shape[0] = n;
shape[1] = nrhs;
#if !IPIV
ndf.aout++;
ndf.nout--;
#endif
ans = na_ndloop3(&ndf, &g, 2, a, b);
#if IPIV
return rb_ary_concat(rb_assoc_new(a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.zhetrf(a, [uplo: 'U', order:'R']) ⇒ [a, ipiv, info]
ZHETRF computes the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting method. The form of the factorization is
A = U*D*U**H or A = L*D*L**H
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. This is the blocked version of the algorithm, calling Level 3 BLAS.
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 6004
static VALUE
lapack_s_zhetrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,1,shape_piv},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zhetrf, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zhetrf");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.zhetri(a, ipiv, [uplo: 'U', order:'R']) ⇒ [a, info]
ZHETRI computes the inverse of a complex Hermitian indefinite matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHETRF.
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 6249
static VALUE
lapack_s_zhetri(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zhetri, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zhetri");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.zhetrs(a, ipiv, b, [uplo: 'U', order:'R']) ⇒ [b, info]
ZHETRS solves a system of linear equations A*X = B with a complex Hermitian matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHETRF.
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 6487
static VALUE
lapack_s_zhetrs(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zhetrs, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zhetrs");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.zlange(a, norm, [order: 'R']) ⇒ Numo::DFloat
ZLANGE returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex matrix A.
ZLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 123
static VALUE
lapack_s_zlange(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, norm, ans;
narray_t *na1;
ndfunc_arg_in_t ain[1] = {{cT,2}};
ndfunc_arg_out_t aout[1] = {{cRT,0}};
ndfunc_t ndf = {&iter_lapack_s_zlange, NO_LOOP|NDF_EXTRACT, 1, 1, ain, aout};
args_t g;
VALUE opts[1] = {Qundef};
ID kw_table[1] = {id_order};
VALUE kw_hash = Qnil;
CHECK_FUNC(func_p,"zlange");
rb_scan_args(argc, argv, "2:", &a, &norm, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
g.order = option_order(opts[0]);
g.norm = option_job(norm,'F','F');
//reduce = nary_reduce_options(Qnil, &opts[1], 1, &a, &ndf);
//A is DOUBLE PRECISION array, dimension (LDA,N)
//On entry, the M-by-N matrix A.
//COPY_OR_CAST_TO(a,cT); // not overwrite
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
ans = na_ndloop3(&ndf, &g, 1, a);
return ans;
}
|
.zposv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, info]
ZPOSV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N Hermitian positive definite matrix and X and B are N-by-NRHS matrices. The Cholesky decomposition is used to factor A as
A = U**H* U, if UPLO = 'U', or
A = L * L**H, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations A * X = B.
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 595
static VALUE
lapack_s_zposv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
narray_t *na1, *na2;
size_t n, nb, nrhs;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
size_t shape[2];
ndfunc_arg_out_t aout[2] = {{cInt,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zposv, NO_LOOP|NDF_EXTRACT, 2,2, ain,aout};
args_t g;
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
VALUE opts[2] = {Qundef,Qundef};
CHECK_FUNC(func_p,"zposv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.order = option_order(opts[0]);
g.uplo = option_uplo(opts[1]);
COPY_OR_CAST_TO(a,cT);
COPY_OR_CAST_TO(b,cT);
GetNArray(a, na1);
GetNArray(b, na2);
CHECK_DIM_GE(na1, 2);
CHECK_DIM_GE(na2, 1);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
if (NA_NDIM(na2) == 1) {
ain[1].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col=a.row=%"SZF"u b.row=%"SZF"u", n, nb);
}
shape[0] = n;
shape[1] = nrhs;
#if !IPIV
ndf.aout++;
ndf.nout--;
#endif
ans = na_ndloop3(&ndf, &g, 2, a, b);
#if IPIV
return rb_ary_concat(rb_assoc_new(a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.zpotrf(a, [uplo: 'U', order:'R']) ⇒ [a, info]
ZPOTRF computes the Cholesky factorization of a complex Hermitian positive definite matrix A. The factorization has the form
A = U**H * U, if UPLO = 'U', or
A = L * L**H, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular. This is the block version of the algorithm, calling Level 3 BLAS.
6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 6739
static VALUE
lapack_s_zpotrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zpotrf, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zpotrf");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.zpotri(a, [uplo: 'U', order:'R']) ⇒ [a, info]
ZPOTRI computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF.
6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 6980
static VALUE
lapack_s_zpotri(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zpotri, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zpotri");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.zpotrs(a, b, [uplo: 'U', order:'R']) ⇒ [b, info]
ZPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H * U or A = L * L**H computed by ZPOTRF.
7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 7217
static VALUE
lapack_s_zpotrs(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zpotrs, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zpotrs");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.zsysv(a, b, [uplo: 'U', order:'R']) ⇒ [a, b, ipiv, info]
ZSYSV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. The diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B.
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 432
static VALUE
lapack_s_zsysv(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, b, ans;
narray_t *na1, *na2;
size_t n, nb, nrhs;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{OVERWRITE,2}};
size_t shape[2];
ndfunc_arg_out_t aout[2] = {{cInt,1,shape},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zsysv, NO_LOOP|NDF_EXTRACT, 2,2, ain,aout};
args_t g;
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
VALUE opts[2] = {Qundef,Qundef};
CHECK_FUNC(func_p,"zsysv");
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.order = option_order(opts[0]);
g.uplo = option_uplo(opts[1]);
COPY_OR_CAST_TO(a,cT);
COPY_OR_CAST_TO(b,cT);
GetNArray(a, na1);
GetNArray(b, na2);
CHECK_DIM_GE(na1, 2);
CHECK_DIM_GE(na2, 1);
CHECK_SQUARE("matrix a",na1);
n = COL_SIZE(na1);
if (NA_NDIM(na2) == 1) {
ain[1].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col=a.row=%"SZF"u b.row=%"SZF"u", n, nb);
}
shape[0] = n;
shape[1] = nrhs;
#if !IPIV
ndf.aout++;
ndf.nout--;
#endif
ans = na_ndloop3(&ndf, &g, 2, a, b);
#if IPIV
return rb_ary_concat(rb_assoc_new(a,b),ans);
#else
return rb_ary_new3(3,a,b,ans);
#endif
}
|
.zsytrf(a, [uplo: 'U', order:'R']) ⇒ [a, ipiv, info]
ZSYTRF computes the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting method. The form of the factorization is
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with with 1-by-1 and 2-by-2 diagonal blocks. This is the blocked version of the algorithm, calling Level 3 BLAS.
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 5256
static VALUE
lapack_s_zsytrf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,1,shape_piv},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zsytrf, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zsytrf");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.zsytri(a, ipiv, [uplo: 'U', order:'R']) ⇒ [a, info]
ZSYTRI computes the inverse of a complex symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSYTRF.
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 5501
static VALUE
lapack_s_zsytri(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zsytri, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zsytri");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.zsytrs(a, ipiv, b, [uplo: 'U', order:'R']) ⇒ [b, info]
ZSYTRS solves a system of linear equations A*X = B with a complex symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSYTRF.
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 5739
static VALUE
lapack_s_zsytrs(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
#line 144 "gen/../tmpl/trf.c"
VALUE a, ans;
#if IPIV_IN
VALUE ipiv;
#endif
#if RHS
VALUE b;
size_t n, nb, nrhs;
narray_t *na2;
#endif
narray_t *na1;
#line 160 "gen/../tmpl/trf.c"
#if IPIV_OUT
size_t shape_piv[1];
#endif
#if IPIV_IN
# if RHS
ndfunc_arg_in_t ain[3] = {{cT,2},{cInt,1},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cInt,1}};
# endif
#else
# if RHS
ndfunc_arg_in_t ain[2] = {{cT,2},{OVERWRITE,2}};
# else
ndfunc_arg_in_t ain[1] = {{OVERWRITE,2}};
# endif
#endif
ndfunc_arg_out_t aout[1+IPIV_OUT] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zsytrs, NO_LOOP|NDF_EXTRACT,
1+IPIV_IN+RHS, IPIV_OUT+1, ain,aout};
args_t g = {0,0};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"zsytrs");
#if IPIV_IN
# if RHS
rb_scan_args(argc, argv, "3:", &a, &ipiv, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "2:", &a, &ipiv, &kw_hash);
# endif
#else
# if RHS
rb_scan_args(argc, argv, "2:", &a, &b, &kw_hash);
# else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
# endif
#endif
#if TRANS
kw_table[1] = id_trans;
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.trans = option_trans(opts[1]);
#elif UPLO
rb_get_kwargs(kw_hash, kw_table, 0, 2, opts);
g.uplo = option_uplo(opts[1]);
#else
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
#endif
g.order = option_order(opts[0]);
#if !RHS
COPY_OR_CAST_TO(a,cT);
#endif
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
#if IPIV_OUT
shape_piv[0] = min_(ROW_SIZE(na1),COL_SIZE(na1));
#endif
#if RHS
COPY_OR_CAST_TO(b,cT);
GetNArray(b, na2);
CHECK_DIM_GE(na2, 1);
n = COL_SIZE(na1);
#if SYM
n = min_(n,ROW_SIZE(na1));
#endif
// same as gesv.c
if (NA_NDIM(na2) == 1) {
ain[1+IPIV_IN].dim = 1;
nb = COL_SIZE(na2);
nrhs = 1;
} else {
nb = ROW_SIZE(na2);
nrhs = COL_SIZE(na2);
{ int tmp; SWAP_IFCOL(g.order,nb,nrhs); }
}
if (n != nb) {
rb_raise(nary_eShapeError, "matrix dimension mismatch: "
"a.col(or a.row)=%"SZF"u b.row=%"SZF"u", n, nb);
}
#endif
#if IPIV_IN
# if RHS
ans = na_ndloop3(&ndf, &g, 3, a, ipiv, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 2, a, ipiv);
return rb_assoc_new(a, ans);
# endif
#else
# if RHS
ans = na_ndloop3(&ndf, &g, 2, a, b);
return rb_assoc_new(b, ans);
# else
ans = na_ndloop3(&ndf, &g, 1, a);
# if IPIV_OUT
return rb_ary_unshift(ans, a);
# else
return rb_assoc_new(a, ans);
# endif
# endif
#endif
}
|
.ztzrzf(a, [order: 'R']) ⇒ [a, tau, info]
ZTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A to upper triangular form by means of unitary transformations. The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N unitary matrix and R is an M-by-M upper triangular matrix.
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 4206
static VALUE
lapack_s_ztzrzf(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, ans;
int m, n, tmp;
narray_t *na1;
#if JPVT
VALUE jpvt;
#endif
/**/
#if TAU
size_t shape_tau[1];
#endif
ndfunc_arg_in_t ain[1+JPVT] = {{OVERWRITE,2}};
ndfunc_arg_out_t aout[1+TAU] = {{cT,1,shape_tau},{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_ztzrzf, NO_LOOP|NDF_EXTRACT,
1+JPVT, TAU+1, ain,aout};
args_t g = {0,1};
VALUE opts[2] = {Qundef,Qundef};
VALUE kw_hash = Qnil;
ID kw_table[2] = {id_order,id_uplo};
CHECK_FUNC(func_p,"ztzrzf");
#if JPVT
rb_scan_args(argc, argv, "2:", &a, &jpvt, &kw_hash);
#else
rb_scan_args(argc, argv, "1:", &a, &kw_hash);
#endif
rb_get_kwargs(kw_hash, kw_table, 0, 1+UPLO, opts);
g.order = option_order(opts[0]);
#if UPLO
g.uplo = option_uplo(opts[1]);
#endif
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
SWAP_IFCOL(g.order,m,n);
#if TAU
shape_tau[0] = min_(m,n);
#endif
#if JPVT
COPY_OR_CAST_TO(jpvt,cInt);
ans = na_ndloop3(&ndf, &g, 2, a, jpvt);
rb_ary_concat(rb_ary_assoc(a,jpvt), ans);
return ans;
#else
ans = na_ndloop3(&ndf, &g, 1, a);
#if TAU == 0
return rb_assoc_new(a, ans);
#else
rb_ary_unshift(ans, a);
return ans;
#endif
#endif
}
|
.zungqr(a, tau, order: 'R') ⇒ [a, info]
ZUNGQR generates an M-by-N complex matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M
Q = H(1) H(2) . . . H(k)
as returned by ZGEQRF.
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 |
# File 'ext/numo/linalg/lapack/lapack_z.c', line 4342
static VALUE
lapack_s_zungqr(int argc, VALUE const argv[], VALUE UNUSED(mod))
{
VALUE a, tau, ans;
int m, n, k, tmp;
narray_t *na1, *na2;
ndfunc_arg_in_t ain[2] = {{OVERWRITE,2},{cT,1}};
ndfunc_arg_out_t aout[1] = {{cInt,0}};
ndfunc_t ndf = {&iter_lapack_s_zungqr, NO_LOOP|NDF_EXTRACT, 2,1, ain,aout};
args_t g = {0};
VALUE opts[1] = {Qundef};
VALUE kw_hash = Qnil;
ID kw_table[1] = {id_order};
CHECK_FUNC(func_p,"zungqr");
rb_scan_args(argc, argv, "2:", &a, &tau, &kw_hash);
rb_get_kwargs(kw_hash, kw_table, 0, 1, opts);
g.order = option_order(opts[0]);
COPY_OR_CAST_TO(a,cT);
GetNArray(a, na1);
CHECK_DIM_GE(na1, 2);
m = ROW_SIZE(na1);
n = COL_SIZE(na1);
GetNArray(tau, na2);
CHECK_DIM_GE(na2, 1);
k = COL_SIZE(na2);
if (m < n) {
rb_raise(nary_eShapeError,
"a row length (m) must be >= a column length (n): m=%d n=%d",
m,n);
}
if (n < k) {
rb_raise(nary_eShapeError,
"a column length (n) must be >= tau length (k): n=%d, k=%d",
k,n);
}
SWAP_IFCOL(g.order,m,n);
ans = na_ndloop3(&ndf, &g, 2, a, tau);
return rb_assoc_new(a, ans);
}
|